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Abstract. Human computer interaction (HCI) groups are more and
more often exploring the utility of new, lower cost electroencephalog-
raphy (EEG) interfaces for assessing user engagement and experience
as well as for directly controlling computers. While the potential ben-
efits of using EEG are considerable, we argue that research is easily
driven by what we term naïve neurorealism. That is, data obtained with
psychophysiological devices have poor reliability and uncertain valid-
ity, making inferences on mental states difficult. This means that unless
sufficient care is taken to address the inherent shortcomings, the contri-
butions of psychophysiological human computer interaction are limited
to their novelty value rather than bringing scientific advance. Here, we
outline the nature and severity of the reliability and validity problems
and give practical suggestions for HCI researchers and reviewers on the
way forward, and which obstacles to avoid. We hope that this critical
perspective helps to promote good practice in the emerging field of psy-
chophysiology in HCI.
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1 Outline

In the following subsections, we will first briefly summarise the history of EEG
and describe the rise in use of psychophysiology in HCI. Following, we will discuss
that the reduced costs of equipment as well as the increased popular appeal of
neuroscience are likely reasons behind the explosive growth of interest. However,
we argue that what we term naïve neurorealism can lead to unsubstantiated
optimism. In short, this concerns the idea that use of psychophysiological mea-
surements necessarily enables objective knowledge of the mind, and thereby must



lead to a high degree of insight and user-control. We explain this and illustrate
the point and improve discussion by first outlining a hypothetical example of an
application scenarios: the BrainGuitar. The device is, to our knowledge, purely
fictional and merely serves here to illustrate some of the more serious caveats
that occur in the field. We explain how the known methodological aspects of
reliability and validity as pertaining to psychophysiological measurements un-
dermine the credibility of inference of mental states. In particular, the weak
signal to noise ratio of EEG is discussed, and how strongly this is affected by
artifacts. Finally, we provide guidelines for scientists who consider the utility of
psychophysiological measurements as well as reviewers who assess the contribu-
tions of others.

2 EEG in HCI

In 1929, Hans Berger [1] dramatically showed how EEG can enable us to non-
invasively measure human brain activity at a high temporal accuracy. Berger
was also the first to discover alpha waves, one of the most prominent features of
the EEG. Alpha waves are easily observed as a stereotypical oscillation in the
range of 8Hz–12Hz that can be observed over much of the scalp (for a history of
Berger’s work, see [2]). As they appear in the absence of prominent stimuli, they
are often used as an index of relaxation, or brain inactivity (however, observation
of alpha waves alone is not a sufficient condition to conclude that a reduction
of brain activity took place [3]. We will come back to the issue of performing
reverse inferences in Sec. 4.6).

Another important discovery in the field was the P300, a brain signal initially
observed in concomitance with the presentation of an unexpected stimulus. Dis-
covered in 1965 [4], it manifests itself as a large positive potential starting at
approximately 300ms post stimulus. The P300 is currently believed to indicate
saliency (due to an interaction between attention and memory, under one hy-
pothesis [5]). Due to its characteristics (relatively high amplitude and reliability),
the P3 allowed researchers to develop the P3 speller, the first working instance
of a Brain-Computer Interface (BCI) [6]. This is particularly useful for patients
with serious disabilities, such as the locked-in syndrome, for whom a BCI may
be the most efficient way to communicate.

As computer technology increased in quality and availability, EEG became
more and more available across domains. The relative ease in which raw brain-
related signals can be obtained and analysed led to rapid developments. Re-
searchers and practitioners are now able to develop tools based on EEG and
other physiological measurements with common electronic devices. It is now, for
example, possible to implement a Brain-Controlled address book based on the
P3 speller concept even on mobile phones [7].

2.1 The Rise of Brain Informed Human Computer Interaction

In HCI, EEG is used for various purposes. Affective computing [8] and physio-
logical computing [9] are two intertwined branches of this field: in both, cognitive



ee

Fig. 1. Growing use of EEG in HCI. The graph displays the growth of published
papers in EEG, HCI and the combination thereof, showing greater growth of EEG
in HCI (EEG + HCI) than either of its constituent parts, as shown by the growing
proportion of EEG in HCI as a function of EEG papers (EEG + HCI %).

and emotional states are predicted or classified based on their physiology (in af-
fective computing, the emotional state is of particular interest). Both investigate
how systems should adapt to detected changes in users’ own states. For exam-
ple, it has been attempted to measure task engagement by using EEG alpha
asymmetry, i.e. the difference in alpha power between the two hemispheres [10].
In this kind of research, two simultaneous assumptions are made: firstly, alpha
power correlates to reduced neural activity and, secondly, greater left than right
activity corresponds to positive emotions, and / or high motivation. Another
area worth of note is neurofeedback: this area investigates the possibility of
building systems that take advantage of “tight feedback loops”, so that users’
(or patients’, for medical applications) cognitive states in a predefined direction.
For example, to remain in the domain of alpha oscillations, elderly patients have
been trained to increase their peak alpha (10Hz–11Hz) power, which was found
to be associated with increases in their processing speed and executive func-
tion [11]. However, it remains a debated issue that claims regarding the success
of neurofeedback may be overblown for marketing purposes, and as many of
these systems are commercial, a conflict of interest could be present [12].

The interest of human computer interaction research in psychophysiologi-
cal data grew exponentially over the last few years. This can be easily seen in
Fig. 1, which maps the number of papers (as indexed by Google Scholar) per
year from 1988 (the first EEG brain computer interface [6]) to 2014. Of course,
scientific production in general continues to grow [13], but it is fair to say that
up until 1993, EEG was a fairly uncommon interest for HCI, with ca. 0.6% of
publications. However, it seems that the combination of HCI and EEG took off
in the subsequent years, roughly doubling in successively 1.5 (1994-1995: 24), 4



(1998-1999: 56), 3.5 (2001-2003: 138), 3 (2005-2007: 297), 3 (2009: 499) and 3
(2012: 1020) years. The same years to double from 1993 numbers for the related
disciplines separately would be for 6, 4 and 6 years for HCI and 9 and 10 years
for EEG. In other words, the number of published studies using EEG in HCI
grows about twice as fast as HCI and three times faster than EEG in general.
Whereas use of EEG was extremely rare for HCI in 1993, (at 0.6%), it is now
merely uncommon (at 5.2%).

3 Naïve neurorealism

The degree that neuroscience has captured the imagination of the popular press
and interest of companies and academic institutions alike is thus understandable,
but should be treated with a healthy dose of scientific scepticism. We coin the
term naïve neurorealism to describe the idea that “the brain cannot lie” and that
somehow, a subjective measure immediately becomes objective, accessible and
trustworthy because the brain is “directly” involved. The naïvity might stem
from the Cartesian assumption that because the brain “causes thought”, the
measurement of the brain necessarily brings one closer to “the truth”.

In HCI, this can for example lead to the idea that one simply plugs in a
brain signal and thereby improve an existing user-interface. To illustrate, let us
imagine the following, hypothethical scenario in which EEG in HCI could, but
should not, be applied:

The BrainGuitar. The guitar remains an extremely popular musical in-
terface. However, its bi-manual multi-touch design is characterised by a
steep learning slope that can be an obstacle to many a beginner. We
imagine a future in which, rather than relying on our hands, we can di-
rectly control the guitar through the use of our brain. The BrainGuitar
relies on spectral analysis of EEG signals to determine whether ongoing
music is enjoyable or not. If the music produced by the BrainGuitar is not
liked, we realign the style to suit the musician’s objective taste. A user
study was carried out in which 20 practitioners, none of whom had prior
experience playing guitar, played 5-10 minutes either with BrainGui-
tar or normal, classical guitar. We prove with surveys that satisfaction
and usability are significantly better with Brain- than normal guitars.
Self-reports indicated that BrainGuitar users were surprised to discover
their subjective and objective musical taste did not always correspond,
showcasing the exploration value of the interface. Finally, we discuss the
neurofuture in which everyone can enjoy playing guitar.

In our hypothetical scenario, naïve neurorealism is demonstrated by the invalid
assumption that because we use a neural source (possibly), the BrainGuitar is
better able to determine whether the user likes a song or not. Combined with
the intrinsic appeal of the human mind, this can easily lead to big claims of
“mind reading”, “mind controling” or “thought identification”. However, already
in the first BCI-related publication, the authors clarify [6]: “[. . .], there is no



more ’mind reading’ in the procedures we describe than there is when a person is
handed a pencil and asked to record impressions.” Mind reading is made vastly
more difficult due to concerns regarding reliability and validity.

4 Reliability and validity concerns

Reliability concerns the degree to which measurements are consistent. For ex-
ample, a measuring tape, properly handled, can reliably indicate a user’s height
in feet, meters, inches and/or centimetres. It is unlikely to give a very different
metric if the measuring is taken on a different day of the week, or by a different
person. The validity of a measurement tool concerns the degree to which it mea-
sures what it is supposed to measure. A measuring tape can be used to measure
one’s height, but not weight.

4.1 Source localization

EEG, by contrast, is a very indirect measure: since the electrodes are placed on
the skin, rather than in the brain directly, it can only measure the electric poten-
tial of the scalp. Electrical potentials with neuronal sources, therefore, are picked
up only after having passed other cortical areas, as well as the cerebrospinal fluid,
skull and skin, resulting in the well known problem of spatial blurring, and poor
spatial resolution of EEG [14]. Indeed, given the already weak signals of individ-
ual sources, the only reason we can measure EEG in the first place is because
large groups of neurons fire synchronously in the same direction. Accordingly,
the topography of an EEG potential gives a poor approximation of its neuronal
source, which has given rise to various proposed solutions for predicting scalp
activity as a function of a known source (the forward problem, c.f. [15]) and local-
ising sources as a function of measured scalp activity (the inverse problem, [16]).

4.2 Signal to noise ratio

However, as debate regarding localisation problems continues, it is still true that
human brain-related EEG has been reliably measured for more than 85 years
now [1], and related to specific cognitive functions for over half a century [17].
One of the reasons of this gap again has to do with reliability: although Berger’s
[1] alpha activity can be easily discerned by the eyes (see Fig. 2, C), being in the
range of ca. 30 µV, EEG related to specific sensory or response related events are
relatively much smaller. For instance, in the top-right panel, Fig. 2 shows what
raw EEG looks like and how much it is affected by visual events (here: focally
presented pictures of people).

It is impossible to discern any EEG related to the stimulus due to the amount
of background noise relative to the signal (i.e. the low signal to noise ratio). How-
ever, as the background noise is presumably unrelated to the event, it can be
steadily reduced by repeating the exact same conditions over and over again,
and averaging across measurements. Sutton et al. [4] thus used between 30 and



360 repetitions to create the average event related potentials used to discover
the P300 (previously mentioned in Sec. 2). Clearly, the number of data points
involved in computation over subjects, conditions, channels, timepoints and rep-
etitions was considerable and advancements in EEG benefited accordingly from
the availability of computers in university campuses. Much has changed since
1965, but the problem of low SNR in EEG remains. Indeed, both the number
of suggested repetitions and emphasis on strong experimental control remains
similar in modern EEG [18]. Of particular concern, in this regard, are artifacts
in EEG.

4.3 Artifacts

One of the reasons that we require so many repetitions is because EEG is com-
monly contaminated with artifacts. In particular, EEG is extremely sensitive to
eye-blinks and movements, as is portrayed in Fig. 2. In the top left panel, EEG is
shown during episodes of eye movements (A) and blinks (B), resulting in activity
levels of >100 µV. The traditional way to deal with such artifacts is commonly
referred to as “artifact rejection by visual inspection”, which means that an ex-
pert looks at visualisations of the entirety of the data during or after collection,
and selects all data that is suspected of being contaminated with artifacts related
to eye-movements and blinks, as well as head movements, muscle activity, and
so on. The top left panel, in this regard, contains problematic data while the top
right seems more normal. These days, EEG studies tend to rely on automatic or
semi-automatic classification to distinguish contaminated from clean data, but
as the latter tend to account for more variance than the former, artifact rejection
is still commonly employed. As this leads to the removal of significant amounts
of data, more repetitions are required to sustain the reliability.

Another family of methods commonly employed to enhance SNR are artifact-
correction methods. Rather than removing time-points from the data if artifacts
are suspected, these methods aim to subtract their contribution from the signal.
The classic method for doing this is via linear regression removing the correla-
tion with the electro-oculogram (EOG, [19]), which is normally collected with
electrodes placed at sites near the eyes. However, there are drawbacks to this
method – it will, for example, also remove the EEG that is collected with EOG
electrodes. For this reason, methods that decompose the EEG into components
that can be related to artifacts or uncontaminated EEG are becoming more
popular [20]. An example is provided in the central top panel of Fig. 2, show-
ing the top left panel as it appeared after removing EOG related components
using independent component analysis [21]. Again, the degree of activity after
artifact correction is much lower (here ca. 2 times), although it is still clearly
higher than during the “clean” interval. For this reason, we have added specific
guidelines here regarding artifacts.
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Fig. 2. Effects of artifacts on EEG measurements in time (upper panels) and frequency
(lower panels) domains. A, B, and C indicate three common types of contaminating
sources related to eye movements, eye blinks and alpha activity. The central top panel
shows how artifact correction affects the strongly contaminated top left panel. The
top right panel displays typical EEG activity during a task. The lower left panel show
the spectral power of the first (“eyes”: artifacts A and B), and second (“alpha”: C)
half of the top left panel, as well as the top-right panel (“clean” data). Finally, The
lower right panel shows the spectral power after artifact correction. Data available from
www.hiit.fi/manuel.eugster/aomm2015/.

www.hiit.fi/manuel.eugster/aomm2015/


4.4 Measuring mental states or systematic artifacts

A common misconception is that artifacts only reduce reliability. However, ar-
tifacts may also be disastrous to the validity of a study. For example, the eye
movements shown in Fig. 2 strongly affect activity, but not necessarily consis-
tently across spectral frequencies. That is to say, eye movements cause extreme
power in the lowest (<8Hz) frequencies but do not affect alpha (8Hz–12Hz)
and beta (13Hz–29Hz) frequencies as much (a common finding, cf. [22]). The
higher frequencies (30Hz—200Hz), meanwhile, are of considerable interest for
people interested in consciousness [23], meditation [24] and neurofeedback [25]
but as illustrated in Fig. 2, and investigated closer elsewhere [26], [27], it is also
possible that eye and muscle movements cause activity within these frequency
bands. Consequently, when neuroscientists study how a cognitive function causes
differential spectral activity, they aim to control extraneous effects as much as
possible to avoid confounds – that is unrelated effects that explain the observed
findings. As a result, there is little consensus regarding the relationship between
specific frequency bands and cognitive functions.

4.5 Data analysis

Typically, the use of EEG in HCI starts with a simple application idea (here,
the BrainGuitar). The first obstacle, as discussed so far, is to map such an
idea to a sound neurophysiological paradigm. The second obstacle then, after
recording the data, is to rigorously perform the data analysis. Unfortunately,
decoding brain states is a difficult data analytic endeavour: major issues are
often very specific experimental designs, the unfavourable signal to noise ratio,
the vast dimensionality of the data, and the high trial-to-trial variability [28].
Fortunately, recent literature provides comprehensive frameworks for rigorous
statistical analysis and predictive modelling: see [29] for a tutorial on single-trial
analysis, and [30] for a general approach on evaluating prediction algorithms.

From an application point of view, the final goal of the data analysis is to
develop a predictive model which discriminates the different brain states with
the highest accuracy. In our hypothetical scenario, this is for example a classifier
predicting one of the two classes “I like the song” versus “I don’t like the song”.
Estimating the predictive power and the generalisation error of such a classifier
on the measured data is a easy source of mistakes (see [28] for a list of typical
pitfalls). Here, we want to underscore one. Neurophysiological paradigms often
rely on an imbalance of the brain states under investigation. Consequently, the
prediction problem is imbalanced and the used cross-validation scheme as well as
the performance measures have to take this into account (see [28], Section 5.6). In
the BrainGuitar example, no user had prior experience playing guitar. Therefore,
most of the observations are probably “dislikes” and only a few “likes” will be
available. A default “I don’t like this song” classifier will have a high accuracy
but no validity.



4.6 The seductive allure of neurorealism

Neuroscience has brought many advances to our understanding of the brain and
mind, to the point that the expectations of its capabilities are clearly exagger-
ated. Thus, people are known to find even bad explanations more convincing if
they come wrapped in neuroscience talk [31]. One of the problems inherent in
neuroscience is that the same cognitive (or artefactual) function can map onto
various spectral frequencies (see Sec. 4.4) or brain areas, and conversely, that
different functions may affect the same frequencies or brain areas. As a result, it
is often possible to predict activity in various brain areas (IF mental function X,
THEN brain activity Y), but the reverse inference (IF activity Y then mental
function X) is fallacious [32], and not necessarily true. Similarly, localising cog-
nitive functions to specific areas can be challenging: for example, hemispheric
activity has been linked to both emotional valence (positive / negative emo-
tions) and motivation. Simply observing greater left than right activity would
not be informative enough to conclude whether someone is highly motivated, or
in a positive mood [3]. Moreover, mappings between brain areas and functions
within the same person might not be stable over time, since specialisations in
brain areas can adapt to changes in its environment [33]. While it is debatable
(c.f. [34]) that the reverse inference can sometimes lead to valuable information,
this is not necessarily true.

In the BrainGuitar, one can argue that a correlate for "liking" a song might
be found in frontal asymmetry (but see [35]). The fallacy of reverse inference and
the naive of the researchers is demonstrated by the surprise of the user: While
this should suggest the measurement of liking was invalid, instead they feel the
BrainGuitar revealed something beyond the knowledge of the users. Are they
sure, we should ask, if they do not pick up correlates that in themselves may
be caused by the brain, but are not equivalent to brain signals? For example,
eye movements and muscle activity are, of course, caused by brain activity, and
contaminate EEG activity, but are not brain activity themselves.

In other words, reverse inferences should be treated with great caution,
and overly positive statements such as “enjoyment was determined using EEG”
should be avoided. We urge the field (see also [36]) to tread cautiously, partic-
ularly when making strong claims in academic work and when talking to the
popular media.

5 Other psychophysiological measurements

In this article, we tend to use EEG and psychophysiology interchangeably. This
is, on the one hand, because concerns over reliability and validity are not as strik-
ing for other physiological measurements such as electrodermal activity (EDA,
or galvanic skin response), heart rate (electrocardiogram), respiration rates, and
so on. In some cases, combining signals from these sources into a single predictor
can provide a better assessment of the users’ state than EEG alone (see [37] for
a review).



The source of these measures is rather well localised (the hand, the heart),
and the number of associated psychological constructs is limited (usually arousal).
However, even for these measures, the relationship is not as simple as it first ap-
pears: emotionally exciting stimuli tend to show increased EDA but slowing of
heart rate, arousal (as an emotional state) tends to have increased EDA and
increased heart rate [38].

Functional near-infrared spectroscopy is another brain imaging technique
which measures the blood oxygenation level dependent (BOLD) response, sim-
ilar to fMRI [39]. This is done by making use of the different light absorption
properties of oxygenated and de-oxygenated haemoglobin. It has been success-
fully employed to image the human brain (see for a review [40]). Although the
field remains relatively young, it is generally held that the spatial localisation of
superficial frontal sources in particular is good. Given that it is also relatively
cheap, at least compared to MRI, and easier to prepare than EEG, it is pos-
sible that the technique will be very popular with interdisciplinary disciplines
such as HCI. However, it should be stressed that knowing that, for example, the
right Brodmann Area 10 is active, does not relieve one from naïve neurorealism:
the area has been mapped onto functions of recollection of episodes [41] and
odours [42], non-speech sounds [43], risk and reward [44]. Is the BrainGuitar
familiar, sound-making, challenging or does it simply smell familiar?

6 Consumer devices

Consumer grade EEG devices are relatively very cheap, usually wireless and
are often easier to set up. These two qualities have created a popular sense
that the future is mind controlled in mainstream media [45–47]. This future,
however, for now largely remains science fiction. In particular, consumer grade
devices (e.g. Epoc Emotiv, Neurosky) focus on low cost materials and ease of
setting up, which will adversely affect SNR and validity. Science or clinical grade
electrodes use highly conducive materials such as silver-chloride (AgCl) and gold
in order to capture as much signal from the scalp as possible – materials of which
the cost can be prohibitive for single consumers. Furthermore, anything (e.g. air,
skin flakes) between the electrodes and scalp will adversely affect SNR, for which
reason researchers often prepare the skin (by scraping, use of cleaning materials)
and use materials like conducive gel to fill in the space between electrode and
scalp. Of course, such procedures are not particularly comfortable and generally
require assistance from an extra person.

Finally, while psychophysiology experts prefer the use of many electrodes
placed at standardised, equidistant locations on the scalp both in order to in-
crease SNR and to enhance external validity with other research groups, this
naturally increases cost and effort. Accordingly, many consumer grade devices
use few (<16) electrodes. The Emotiv EPOC is a common, noteworthy excep-
tion at 14 channels (and two references), although the extra electrodes have a
focus on eye and facial muscle activity rather than EEG (but see [48] for a way
around). Consumer grade devices provide ready made quantified emotional and



cognitive state analysis, but the validity of these classifications cannot easily be
assessed as they tend to rest on trade-secrets and subjective reports. This, in
fact, leads to exactly the circular problem the present paper is aiming to address:
the SNR is poor and it is unclear what is measured. In sum, consumer grade
devices may well provide good fun for consumers, but for science these benefits
are likely offset by the extra costs and efforts involved if a submission is rejected.

7 Conclusion

The use of psychophysiology in HCI has been remarkable. We have seen many
instances in which the fusion of neuroscience and HCI can create new insights
and applications. However, the popularity and naïve neurorealism can lead to an
overly optimistic idea of making psychophysiology a simple plugin of the human-
computer interaction. More importantly, we discussed issues of reliability and
validity that make claims regarding direct mind-control tenuous.

To help this exciting new field, we would like to conclude with a few questions.
From our experience, it is useful to keep these questions in mind while developing
and presenting EEG-in-HCI applications. We hope they may prove beneficial to
other researchers and reviewers.

1. How much does the quality of the apparatus involved reflect the study’s
aims?

2. How much does the conclusion reflect the known limitations of the measure-
ments?

3. Which method was used to correct and/or reject data? How many repetitions
were used in the analysis (BCI: training)?

4. Which electrode sites were used as channels and which reference(s) were
employed?

5. Do the psychophysiological markers correspond to what the authors aim/claim
to measure or could differences have been caused by correlated variables? Is
the paradigm sound?

6. Does the control condition provide a valid comparison?
7. Has the work been communicated to the press with an unbiased, factual

report, and were all communications with the press reviewed by the involved
researchers?
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