Journal of Vision (2014) 14(3):12, 1-12

http://www.journalofvision.org/content/14/3/12 1

Visual symmetry in objects and gaps

Department of Psychological Sciences, University of

Alexis D. J. Makin

Department of Psychological Sciences, University of

Giulia Rampone

1<
1<

Liverpool, Liverpool, United Kingdom

Liverpool, Liverpool, United Kingdom

School of Psychology, University of Aberdeen, Aberdeen,

Alexander Wright

Department of Psychological Sciences, University of

Jasna Martinovic

School of Psychology, University of Aberdeen, Aberdeen,

Marco Bertamini

It is known that perceptual organization modulates the
salience of visual symmetry. Reflectional symmetry is
more quickly detected when it is a property of a single
object than when it is formed by a gap between two
objects. Translational symmetry shows the reverse
effect, being more quickly detected when it is a gap
between objects. We investigated the neural correlates
of this interaction. Electroencephalographic data was
recorded from 40 participants who were presented with
reflected and translated contours in one- or two-object
displays. Half of the participants discriminated regularity,
half distinguished number of objects. An event-related
potential known as the Sustained Posterior Negativity
(SPN) distinguished between reflection and translation.
A similar ERP distinguished between one and two object
presentations, but these waves summed with the SPN,
rather than altering it. All stimuli produced
desynchronization of 8—13 Hz alpha oscillations over the
bilateral parietal cortex. In the Discriminate Regularity
group, this effect was right lateralized. The SPN and
alpha desynchronization index different stages of visual
symmetry discrimination. However, neither component
displayed the Regularity X Objecthood interaction that
is observed in speeded discrimination tasks, suggesting
that integration of visual regularity with objectness is
not inevitable. Instead, both attributes may be
processed in parallel and independently.
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The visual system is extremely sensitive to symmetry.
This could be because symmetry indicates the presence
of objects, because it facilitates figure-ground segrega-
tion in a visual scene, or because it is a cue indicating
mate quality (see Treder, 2010; Tyler, 1995; Wagemans,
1995, for reviews). Symmetry perception can be
demonstrated in newly-hatched poultry chicks (Mas-
calzoni, Osorio, Regolin, & Vallortigara, 2012), and
bees can discriminate symmetry in flowers (Plowright,
Evans, Leung, & Collin, 2011). Reflectional symmetry,
rotational symmetry, and translation are equally
regular in terms of the number of isometric transfor-
mations involved (Mach, 1886/1959). However, nu-
merous psychophysical studies have shown that
reflection is the most efficiently detected (Makin,
Pecchinenda & Bertamini, 2012a; Palmer & Hemen-
way, 1978; Royer, 1981).

Two-dimensional retinal images can be produced
from an infinite number of different three-dimensional
objects. In addition, there are an infinite number of
ways to parse surfaces and edges, but only a subset of
groupings allow people to reliably perceive whole
objects. For these reasons, it is necessary to impose
prior constraints on perceptual interpretation (e.g.,
Pizlo & Stevenson, 1999). The fact that objects often
have reflectional symmetry could help the visual system
get a handle on the inverse problem, perhaps explaining
why humans are especially sensitive to reflection. This
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view, therefore, suggests a close link between reflec-
tional symmetry and objecthood (Treder & van der
Helm, 2007). However, the statistical association
between symmetry and whole objects may only hold for
biological organisms and human products (Tyler,
1995), and we have little difficulty with recognizing
asymmetrical objects like rocks. The connections
between symmetry and objecthood are thus contro-
versial, and require further study.

We therefore focused on the relationship between
reflectional symmetry and objectness. We compared
electrophysiological responses to patterns where re-
flectional symmetry was either congruent or incongru-
ent with other cues indicating the presence of a single
object. Specifically, reflectional symmetry may produce
different electroencephalographic (EEG) activity when
it is the property of a single object than when it is
formed by a ground region between two objects. This
would support the idea that visual sensitivity to
reflection has emerged because of its role in object
representation.

There have been several excellent neuroimaging
studies on symmetry perception. First, Tyler et al.
(2005) measured cerebral blood flow with functional
magnetic resonance imaging (fMRI) while people
viewed reflection or random images. It was found that
the lateral occipital complex (LOC), but not V1 or V2,
was more active when people viewed symmetry (see
also Chen, Kao, & Tyler, 2007; Sasaki, Vanduffel,
Knutsen, Tyler, & Tootell, 2005). These results are
corroborated by evidence that transcranial magnetic
stimulation (TMS) disruption to the LOC, but not V1,
alters symmetry discrimination (Cattaneo, Mattavelli,
Papagno, Herbert, & Silvanto, 2011).

EEG has also been profitably employed to explore
symmetry perception. Norcia, Candy, Pettet, Vildavski,
and Tyler (2002) measured event-related potentials
(ERPs) produced by sequences of reflection and
random patterns. The waveform for reflection became
relatively more negative from around 220 ms onwards.
Jacobsen and Hofel (2003) also recorded ERPs while
people viewed regular or random patterns. In some
conditions participants categorized the patterns as
symmetry or random; on other conditions they
evaluated the patterns as beautiful or ugly. In all tasks,
symmetry produced lower amplitude wave than ran-
dom patterns from around 600 ms to the 1100 ms
poststimulus onset. This difference wave was termed
the Sustained Posterior Negativity (SPN). The SPN
was reduced, but not eliminated, when participants
made aesthetic judgments. In subsequent studies, the
SPN was found when people performed oddball
detection task rather than symmetry discrimination
(Hofel & Jacobsen, 2007a), or when people deliberately
misreported their responses (Hofel & Jacobsen, 2007b).
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In a more recent EEG study, Makin, Wilton,
Pecchinenda, and Bertamini (2012) again presented
reflection and random patterns. The SPN was not
influenced by whether reflection or random required a
“Yes” or “No” response, although EMG activity
recorded from facial muscles was reversed by this
manipulation. Another study from our lab recorded
SPN for reflection, translation, rotation, and random
patterns (Makin, Rampone, Pecchinenda, & Bertamini,
2013). It was found that the SPN was most pronounced
for reflection, but was still present for rotation and
translation. SPN amplitude thus maps the ordinal
sequence of visual salience for different regularities.

Makin, Wilton, et al. (2012) also explored their EEG
data in a different way. They measured changes in
alpha oscillations (defined as 10—14 Hz in that report)
while participants discriminated reflection and random
patterns. Alpha power was reduced at posterior
electrode clusters around 400 ms after stimulus onset.
Event-related desynchronization (ERD) in the alpha
band is assumed by several models to reflect activation
of task relevant networks, enacted by a shift from
default slow wave oscillations to task specific, higher
frequency communication (Buzsaki, 2006; Klimesch,
Sauseng, & Hanslmayr, 2007; Pfurtscheller & Lopes da
Silva, 1999). Makin, Wilton et al. (2012) found that
Alpha ERD was more pronounced over the right
hemisphere, indicating that the right hemisphere was
more active than the left during regularity discrimina-
tion. This lateralization is interesting, because the right
hemisphere is specialized for visuospatial global oper-
ations (Bradshaw & Nettleton, 1981). For example,
damage to the right hemisphere causes pronounced
difficulties in orientating spatial attention (Mesulam,
2002), and the right superior parietal lobule is crucially
involved in mental object rotation (Parsons, 2003).
Makin, Wilton, et al. (2012) speculated that symmetry
discrimination might recruit these right hemisphere
attentional networks, resulting in right lateralized ERD
(cf. Verma, Van der Haegen, & Brysbaert, 2013).
However, we now note that the occipital alpha rhythm
is not likely to result directly from alpha in the
frontoparietal attentional network, but is probably
produced by recurrent loops connecting the thalamus
to early visual areas (Buzsaki, 2006), so many questions
remain.

The neuroimaging work to date has measured brain
responses to symmetrical objects or patterns; however,
it has not directly addressed the putative importance of
symmetry in figure-ground segmentation. Indeed,
symmetry need not be the property of a figure; it is
possible to have a symmetrical gap between two objects.
Examples of symmetrical objects and gaps are shown in
Figure 1. Unlike the neuroimaging literature, many
psychophysical studies have measured the relative
salience of these stimulus types. A common finding is
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Figure 1. Example stimuli from the four conditions. Novel patterns were generated on each trial, so no image was presented twice to

an observer.

that reflectional symmetry is more quickly perceived
when it is the property of a single object than a gap, but
this one object advantage can be reversed for transla-
tion (Baylis & Driver, 1995; Bertamini, Friedenberg, &
Argyle, 2002; Bertamini, Friedenberg, & Kubovy, 1997;
Corballis & Roldan, 1974; Koning & Wagemans, 2009;
Makin, Pecchinenda, & Bertamini, 2012b; Treder &
van der Helm, 2007).

We were interested in whether the SPN or right
hemisphere alpha ERD would be fundamentally
altered by the figure-ground status of symmetrical
patterns. We presented patterns like those shown in
Figure 1 and predicted that the SPN would distinguish
between reflection and translation, as found by Makin
et al. (2013). One possibility is that the SPN might be
reduced or even reversed when regularity is represented
by a gap between two objects, in line with the findings
of speeded discrimination tasks. If this is the case, we
can conclude that networks that generate the SPN
produce this regularity x objecthood interaction. The
same reasoning applies to the right-sided alpha ERD: If
this signal demonstrated regularity by objecthood
interaction, it would likely arise from the brain regions
responsible for the equivalent interaction in speed
discrimination tasks.

We were also interested in the N1 component,
because previous research has shown effects of
symmetry, perceptual organization, and shape pro-
cessing at this latency. Regarding symmetry, Makin,
Wilton, et al. (2012) found larger N1 for reflection than
random patterns, while Makin et al. (2013) found a
larger N1 for reflection than translation. An N1 effect
was not reported in previous research on symmetry
ERPs (Hofel & Jacobsen, 2007a; Jacobsen & Hofel,
2003) possibly because the regular/random stimuli

appeared at the same time as a large high contrast
background in those studies. Regarding perceptual
organization, Machilsen, Novitskiy, Vancleef, and
Wagemans (2011) found that the enhancement of the
N1 in the presence of a contour was larger for iso-
oriented than for randomly-oriented backgrounds, with
the N1 being the only analyzed component showing an
interaction between contour integration and the
context it was presented in. Therefore, we also analyzed
the N1 component to assess if regularity by objecthood
interactions might emerge at this stage.

Another important comparison in our experiment
was between a group of participants actively involved
in regularity discrimination (Reflection or Transla-
tion) and another group who was presented with the
same stimulus, but discriminated the number of
objects (One or Two). Any electrophysiological
measures that are purely related to stimulus charac-
teristics should be similar in both groups. Conversely,
any effect uniquely related to active symmetry
discrimination should be found in the Discriminate
Regularity group only.

Participants

Forty participants were involved in this study (age 17
to 55, three left handed, 17 male). All participants had
normal or corrected-to-normal vision, and were reim-
bursed £10 or awarded course credits. The study had
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local ethics committee approval and was conducted in
accordance with the Declaration of Helsinki.

Apparatus

The apparatus was the same as that used in Makin,
Wilton, et al. (2012) and Makin et al. (2013).
Participants sat in an electrically shielded and darkened
room. The stimuli were presented on a 40 x 30 cm, 60
Hz CRT monitor (Mitsubishi, Tokyo, Japan) approx-
imately 140 cm from the participants. The experiment
was generated using PsychoPy (Peirce, 2007). EEG
data were recorded continuously from 64 scalp
electrodes arranged according to the international
10—20 system, using a BioSemi active-two amplifier
sampling at 512 Hz (BioSemi, Amsterdam, Nether-
lands). Two additional electrodes, the Common Mode
Sense (CMS) and Driven Right Leg (DRL) were used
as reference and ground. Four external electrodes were
used to record the horizontal and vertical electro-
oculograph (EOQG).

Design

Participants viewed four different types of stimuli,
produced by crossing two factors: Regularity (Reflec-
tion, Translation) and Objecthood (One object, Gap
between two objects). Twenty participants discrimi-
nated regularity, ignoring the number of objects.
Another 20 participants discriminated the number of
objects, ignoring regularity.

Stimuli

Example stimuli are shown in Figure 1. Novel
patterns were generated on each trial, so no image was
presented twice across the entire group of 40 partici-
pants. On each trial, a vertical contour was generated
using a random-walk algorithm with 12 inward and
outward turns. The maximum and minimum displace-
ment from the reference line was * 0.64°. These
vertices were equally spaced by 0.21° on the Y-axis, so
contour height was approximately 2.56°. The resulting
contour was then translated or reflected across the
midline. The horizontal distance from reference to the
midline was 0.85° of visual angle.

The two jagged lines (reflected or translated) were
not presented in isolation. Instead they were embedded
in a context that closed the lines to form either a single
central shape, or two opposite shapes.

The overall width of the stimuli was 5.11°, as defined
by the two vertical lines on the outside. Horizontal lines
at the top and bottom defined whether the patterns
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constituted one object (lines meeting in the middle) or
two objects (lines connecting the contours to the
outside edges). Stimuli were presented for 2 s, following
a randomized 1.5- to 2-s baseline. A central fixation
cross was present throughout the baseline and stimulus
presentation period, and participants were encouraged
to fixate and avoid blinking during this period.

Procedure

On each trial, participants observed a pattern,
either reflection or translation, comprised of one
object or the gap between two objects. There were 72
repeats of each condition, giving 288 trials in total.
After the pattern disappeared, participants were
prompted to enter their judgments. For the Discrim-
inate Regularity group the task was to press one
button for reflection and another for translation. For
the Discriminate Number group the task was to press
one button for one object and another for two objects.
Participants pressed the A button with their left hand
and the L button with their right hand. The response
mapping was indicated by the position of words on the
response screen. For example, in the Discriminate
Regularity group, participants would see the words
“REFLECTION” and “TRANSLATION” on the left
and right of the midline. The position of the words
was unpredictable on each trial, and indicated the
meaning of the left (A) and right (L) buttons on the
computer keyboard. For the Discriminate Number
group, the words “ONE” and “TWO” were used in the
same way. This design prevented preparation of motor
readiness potentials during the period when the
patterns were on the screen (Makin, Poliakoff,
Ackerley, & El-Deredy, 2012).

ERP analysis

EEG signals from the 64 scalp electrodes were
analyzed offline using the EEGLAB toolbox for
Matlab (Delorme & Makeig, 2004). Data was re-
referenced to a scalp average and low-pass filtered at 40
Hz. We then downsampled to 128 Hz to reduce file size
and extracted epochs from —1 to 2 s, with a —200 to 0
ms baseline. Eye movement, blink, and other gross
artefacts were removed from the epochs using inde-
pendent components analysis (ICA; Jung et al., 2000).
Data was reformed as 64 independent components and
an average of 11.25 components were removed from
each participant’s data (minimum = 2, maximum = 21).
The number of excluded components was comparable
in the Discriminate Regularity and Discriminate
Number groups (11.5 vs. 11.0, 7 (38) < 1, n.s.). After
ICA, we removed epochs with amplitude exceeding =
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100 uV. Approximately 9% of the trials were removed
from each condition; again there were no differences
between conditions, F(3, 117) < 1, n.s., and no
difference between Discriminate Number and Dis-
criminate Regularity groups, F(1, 38) < 1, n.s. Finally,
trials from the same condition were averaged within
participants’ data sets.

The SPN was defined as the difference between
reflection and translation waves from 250 to 1000 ms
poststimulus. We first ran a series of ¢ tests on the
combined wave from the PO7 and POS electrodes to
empirically determine when the SPN began. The first
significant difference between reflection and transla-
tion ERPs was 250 ms (p < 0.05). This latency is in
close agreement with previous work (e.g., Norcia et
al., 2002). Supplementary analysis based on different
electrode clusters and time windows leads to the same
conclusions. N1 was defined as amplitude from 160
to 220 ms at the same electrodes. Statistical analysis
was done with a mixed analysis of variance (AN-
OVA). There were two within-subjects factors (Reg-
ularity [Reflection, Translation] x Objecthood [One
object, Two objects with a gap]) and one between-
subjects factor (Task [Discriminate Regularity, Dis-
criminate Number]). With all ANOVA analyses
reported below, the Greenhouse-Geisser correction
factor was used when the assumption of sphericity of
error variance was violated (Greenhouse & Geisser,
1959).

Time-frequency analysis

Time-frequency analysis was performed on the
same cleaned EEG data using the FieldTrip toolbox
for Matlab (Oostenveld, Fries, Maris, & Schoffelen,
2011). We focused on frequencies from 5 to 20 Hz in
1 Hz increments. EEG data was convolved with a
variable length Hanning-tapered wavelet comprising
four complete cycles at each frequency. Times of
interest were set as —500 to 1500 ms. We then
baseline-corrected the frequency data with reference
to a —500 to 0 ms baseline. Power was calculated as a
proportion of change in power relative to the baseline
interval.

The analysis identified substantial desynchronization
in the 8 to 13 Hz frequency band, from around 400 ms
onwards in posterior electrode clusters (PO7, PO3, P1,
P3, PS5, P7, P9, CP1, CP3, CP5, and right-sided
homologues). Power was analyzed as a function of 3
within-subjects factors (Hemisphere [Left, Right] x
Regularity, [Reflection, Translation] x Objecthood
[One object, Two objects with a gap]), and one
between-subjects factor (Task [Discriminate Number,
Discriminate Regularity])with a mixed ANOVA.
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EOG analysis

In this experiment participants were instructed to
fixate on a central cross during the baseline and
stimulus intervals. In order to establish that unwanted
eye movements and blinks were evenly distributed
across conditions, we measured activity in the hori-
zontal and vertical EOG electrodes. We extracted —500
to 1500 ms epochs, with —200 to 0 ms baseline. For this
analysis we did not exclude any trials, or perform any
artefact correction procedures. For each subject and
condition we calculated absolute amplitude (ignoring
the sign) across each epoch, then we averaged over
epochs. There was no difference in VEOG activity
between the four conditions, F(1.27, 49.39)=1.498, p=
0.232, or between Discriminate Regularity and Dis-
criminate Number groups, F(1,38) < 1, n.s. Likewise,
HEOG activity was equally distributed across the four
conditions, F(3, 114) < 1 n.s., and between Discrim-
inate Regularity and Discriminate Number groups,
F(1, 38) < 1, n.s. This analysis indicates that any
observed ERP and ERD effects are not attributable to
eye movement artefacts, or represent a side effect of
artefact correction procedures.

Behavioral data

Participants could perform the tasks. In the Dis-
criminate Regularity group, the mean percentage of
correct judgments in each condition was as follows:
reflection of one object (93%), reflection of two objects
(94%) translation of one object (94%), translation of
two objects (93%). In the Discriminate Number group,
the mean percentage of correct judgments was 97% in
all conditions.

N1

Grand average ERPs from the PO7 and POS
electrodes are shown in Figure 2. It can be seen that the
NI potential was similar in reflection and translation
trials (panel B), but greater for two-object trials than
one-object trials (panel C).

This was confirmed with mixed ANOVA. There was
no main effect of Regularity, F(1, 38) < 1. n.s., and
although there was a Regularity x Task interaction,
F(1, 38) = 6.708, p = 0.014, partial 5> = 0.150, the effect
of Regularity did not reach significance when the tasks
were analyzed separately (Discriminate Regularity [F(1,
19) =4.037, p = 0.059]; Discriminate Number [F(1, 19)
=3.055, p=0.097]). There was a very strong main effect
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Figure 2. ERP results. (A) Grand Average waveforms recorded from PO7 and PO8 electrodes in all conditions. (B) ERPs in the reflection
and translation trials (collapsed across Number). (C) ERPs from the one- and two-object trials (collapsed across Regularity). Waves
have been smoothened with a 10-point moving average filter. (D) and (E) Topographic difference plot from the 250- to 1000-ms time
window. Blue = higher amplitude in the translation than reflection trials (D), and higher amplitude in the one-object than two-object
trials (E). The same scalp plots are show from three angles. All data shown here is averaged across Task.

of Objecthood, F(1, 38) =81.194, p < 0.001, partial n* =
0.681, that was not further modulated by Task, F(1, 38)
< 1, n.s.). Crucially, there was no Regularity x
Objecthood interaction, F(1, 38) < I, n.s., no three-way
interaction between Regularity, Objecthood, and Task,
F(1, 38) < 1, n.s., and no main effect of Task, F(1, 38)=
1.019, p =0.319.

Sustained posterior negativity

The sustained posterior negativity was defined as
amplitude between 250 and 1000 ms poststimulus
onset. Figure 2A shows amplitude in all four condi-
tions. It can be seen that the amplitude is sensitive to
regularity (as expected) and also to objecthood, with

higher amplitude in the one object condition than the
two objects with gap conditions.

The difference between Reflection and Translation
waves replicates the results of Makin et al. (2013). The
difference between one- and two-object presentations
was much larger than the SPN (Figure 2C), but with a
similar topography (Figure 2E). Although we predicted
a Regularity x Objecthood interaction, this was not
apparent from the waveforms (Figure 2A).

SPN amplitude was explored with a mixed ANOVA.
The main effect of Regularity was significant, F(1, 38)=
6.035, p=0.019, partial * = 0.137, because amplitude
was lower in the reflection trials than the translation
trials (Figure 2B). This effect did not interact with the
between-subjects factor Task, F(1, 38) < 1, n.s.,
indicating that the SPN was comparable whether
people were discriminating regularity or number. The
main effect of Objecthood was significant, F(1, 38) =
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Figure 3. Alpha desynchronization in each task. Data from the Discriminate Regularity task is shown in the upper panels (A) and (B),
data from Discriminate Number task is shown in lower panels (C) and (D). The gray disks in (A) highlight the position of the electrodes
used in all analysis. Topographic plots show the reduction in alpha power (8—13 Hz) as a proportion of power during baseline. This
averages over the 400- to 700-ms time window, and over regularity and number conditions. The right panels show ERD as a function
of time in the left and right posterior electrode clusters. Note the lateralization in the Discriminate Regularity task, but not in the

Discriminate Number task.

36.503, p < 0.001, partial #* = 0.490, Figure 2C, which
did not interact with Task, F(1, 38) < 1, n.s. Most
importantly, there was no Regularity x Objecthood
interaction, F(1, 38) < 1, n.s., and no three-way
interaction between Regularity, Objecthood, and Task,
F(1, 38) < 1, n.s.. Finally, the main effect of Task was
not significant, F(1, 38) = 2.006, p = 0.165.

Alpha desynchronization

Patterns of posterior alpha desynchronization are
shown in Figure 3. Unlike the ERPs, ERD showed
important differences between the groups of partici-
pants performing Discriminate Regularity and Dis-
criminate Number tasks. In the Discriminate

Regularity group, posterior ERD was more pro-
nounced over the right hemisphere (Figure 3A, B). For
the Discriminate Number task, there was no such
lateralization (Figure 3C, D). The same effects are
shown in Time Frequency plots in Figure 4.

We explored these effects with mixed ANOVA.
There was no main effect of Hemisphere, F(1, 38) =
2.045, p =0.161, but a significant Hemisphere x Task
interaction, F(1, 38) = 5.076, p = 0.030, partial > =
0.118. This confirms the patterns shown in Figures 3
and 4. When people discriminated regularity there was
greater desynchronization in the right hemisphere than
the left, F(1, 19) = 4.632, p = 0.044, partial #* = 0.196.
Conversely, when people discriminated number, there
was no such lateralization, F(1, 19) < 1, n.s.
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Figure 4. Time-frequency plots. TF plots code power on the colour axis from 5 to 20 Hz, in 50-ms increments. The scale has been

chosen to highlight posterior ERD in the 8—13 Hz band, which was used in this analysis. These plots average over regularity and
number conditions.

There was no main effect of Regularity, F(1, 38) <1, ERD in the two-object condition for a prolonged

n.s., or Regularity x Task interaction, F(1, 38) < 1., period, at least up to 1500 ms. We thus reanalyzed this
n.s. However, there was a main effect of Objecthood, effect with a more appropriate, longer window of 400
F(1, 38) = 13.348, p = 0.001, partial n* = 0.260, which to 1500 ms. The main effect of objecthood was now
did not differ between Tasks, F(1, 38) < 1, n.s. The slightly stronger, F(1, 38)=18.932, p < 0.001, partial 5*
effect of Objecthood can be seen in Figure 5. Unlike the = 0.333, and there was still no interaction between
relatively transient right lateralization in the Discrim- Objecthood and Task, F(1, 38) < 1, n.s., suggesting

inate Regularity task (Figures 3 and 4), there was more that effect of Objecthood on posterior ERD is not

One object
o 0.2

o
—_

(=]

Power change (p)

035 0 05 1 15

Figure 5. Alpha desynchronization for one and two objects. ERD is shown in the one- and two-object trials. Conventions are the same

as Figure 3, except the time window for the topographic plots extends from 400 to 1500 ms. These plots average over task and
regularity conditions.
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dependent on the participants actively discriminating
number of objects.

Despite our predictions, there was no Regularity x
Objecthood interaction, F(1, 38) < 1, n.s. There was a
Regularity x Objecthood x Task interaction, F(1, 38)=
4.424, p=0.042, partial n* = 0.104, although there were
no significant interactions between Regularity and
Objecthood when the Tasks were analyzed separately
(Discriminate Regularity [F(1, 19) = 1.659, p =0.213];
Discriminate Number [F(1, 19) =2.769, p = 0.113]), so
this is difficult to interpret. There were no other
interaction effects (largest [F(1, 38) = 1.085, p =0.304]).

In this study we analyzed two EEG signals recorded
when participants viewed symmetrical contours that
formed closed objects or gaps. It is known that the
relative salience of reflection and translation are
modulated by contour ownership. In particular, re-
flectional symmetry is most salient when it is a property
of a single object, even for novel abstract shapes. This is
not the case for translation, which is more salient as a
gap between objects.

There has been much debate about the cause of the
Regularity x Objecthood interaction found in speeded
discrimination tasks. It is likely that attention is
automatically attracted to objects, so it is easier to
discriminate the properties of single objects than gaps
between objects (Watson & Kramer, 1999). When
translational symmetry is presented, some additional
perceptual process may counteract the ubiquitous
single object advantage. It could be that translation is
discovered through an active lock and key matching
process, whereby the contours are mentally shifted until
they overlap. It is putatively easier to mentally shift the
contours when they are properties of separate objects
(Baylis & Driver, 1995; Bertamini et al., 1997).
However, some evidence conflicts with the lock and key
hypothesis and other explanations have also been
proposed (Bertamini, 2010; Bertamini, Friedenberg, &
Argyle, 2002; Koning & Wagemans, 2009).

We searched for an electrophysiological signal that
would index the Regularity x Objecthood interaction,
with the hope of shedding light on this phenomenon.
Interestingly, there was no comparable interaction
effect on the N1 component, which has been shown to
be independently sensitive to symmetry (Makin et al.,
2013) and perceptual organization (Machilsen et al.,
2011). There was also no interaction on another
symmetry-related ERP component, the Sustained
Posterior Negativity, occurring between 250 and 1000
ms, or in the posterior alpha ERD between 400 and 700
ms. Therefore, the integration of regularity and
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objecthood information is not inevitable, and both
kinds of information are processed independently at
some stages.

Another objective was to identify electrophysiolog-
ical measures that are purely related to stimulus
characteristics. These measures should be independent
of the task participants are engaged with. The SPN was
fitted this description: It was comparable when people
were discriminating regularity and when they were
discriminating the number of objects. These results
characterize the SPN generators as a bottom-up
response to visual symmetry, which is not sensitive to
other influences. Note that the SPN was quite small in
this study because we are comparing two kinds of
regularity. We predict that a study with an equivalent
random condition would yield a large SPN for both
reflection and translation compared to random (as
found in Makin et al., 2013).

The absence of an interaction effect on SPN
amplitude is particularly interesting because the SPN
does systematically relate to other psychophysical
findings. Makin et al. (2013) found a clear relationship
between SPN amplitude and discrimination speed for
different regularities. It was concluded that discrimi-
nation speed directly arises from regularity sensitive
networks that generate the SPN, and that reflection is
the preferred stimulus for these networks. However, it
seems the regularity by objecthood interaction in
psychophysical studies cannot be related to SPN
generators in this way.

The absent interaction is also surprising in light of
theoretical work on the role of reflectional symmetry
scene segmentation. For example, Pizlo and Stevenson
(1999) point out that there are near infinite possible
interpretations of two-dimensional retinal images, but
the visual system uses prior constraints to discard most
of them. It could be that reflectional symmetry is a
reliable indicator for a single object, and sensitivity to
reflection thus helps with figure-ground segmentation.
However, if reflection detection were so intimately
linked to single-object discrimination, we would expect
different ERPs when reflection is the property of a
single object than a gap between two objects; we found
no such effect in our symmetry-related ERPs.

Which brain regions generated the SPN? Makin,
Wilton, et al. (2012) suggested that the SPN could be
the ERP correlate of symmetry-related LOC activa-
tions discovered by fMRI methods (Chen et al., 2007;
Sasaki et al., 2005; Tyler et al., 2005). In light of the
current results, we predict that the fMRI response to
symmetry in the LOC would be independent of figural
grouping. Indeed, the existing work has reported LOC
activations produced by whole field symmetry rather
than outline symmetry, which implies some indepen-
dence from objecthood.
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Alpha ERD dissociated from SPN. This component
was sensitive to experimental manipulations, but in a
fundamentally different way to the SPN. The most
important effect was that ERD was more pronounced
over the right hemisphere, but only in the group of
participants who were engaged in regularity discrimi-
nation. This differs from the SPN, which was
insensitive to task instructions. Another difference was
that the Alpha ERD also began later than the SPN.
However, ERD was not modulated by regularity, and it
did not display the Regularity x Objecthood interac-
tion. In an earlier study, Makin, Wilton, et al. (2012)
found similar, right-lateralized alpha ERD when
people compared reflection and random patterns. In
most conditions of that study, ERD did not depend on
which type of pattern was presented. The current work
broadly replicates these results, showing that right
ERD is not tuned to stimulus properties, but results
from general engagement with the regularity discrim-
ination task. It can be concluded that SPN and right
alpha ERD index two distinct stages of visual
symmetry discrimination, with quite different profiles.
However, neither process uniquely explains the regu-
larity by objecthood interaction found in speeded
discrimination tasks.

Although the one- and two-object displays were
quite similar (Figure 1), it is clear that participants were
sensitive to this manipulation. Amplitude at posterior
electrodes was more negative in the two-object condi-
tion from the N1 component onwards. Meanwhile
bilateral alpha ERD was greater in two-object trials
from around 400 ms (Figure 5). These main effects of
objecthood were both very robust, and were still clearly
present in the group of participants who were
discriminating regularity. There is no doubt that the
participants were processing the difference between
one- and two-object images. However, this did not
interact with differential processing of reflection and
translation.

Although we can draw no firm conclusions, we may
ask which brain areas were responsible for our right-
lateralized alpha ERD. Buzsaki (2006) summarizes
previous findings, and suggests that the occipital alpha
oscillation results from sequences of excitation and
inhibition in the long loops connecting early visual
regions to the thalamus (see also Pfurtscheller & Lopes
da Silva, 1999). This implies that when we record
posterior alpha ERD, we record a change in the
dominant frequencies of activity in early visual areas.
In this case, right-sided ERD suggests greater inputs
from the left visual field during symmetry discrimina-
tion, but not during number discrimination. However,
there is no a priori reason to believe symmetry
discrimination involves selective attention to inputs
from the left side of space, so we do not make strong
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claims about the brain regions that generated our scalp
ERD.

Conclusions

We have shown that the SPN and right alpha ERD
reflect two distinct aspects of symmetry processing in
the human brain. However, neither process can explain
the regularity by objecthood interaction that is reliably
recorded in speeded discrimination experiments. This is
intriguing, because the SPN has been clearly shown to
reflect other psychophysical findings, including the fact
that reflectional symmetry is more salient than other
regularities. It is also noteworthy that the SPN and
alpha ERD both showed sensitivity to objecthood. We
thus conclude that there must be neural processes that
are independently sensitive to regularity and object-
hood, and that these can be recorded by EEG
techniques. Other processes must be responsible for
combining these signals, but these do not show up in
our scalp recordings. These results are unexpected in
the light of previous research, which has suggested that
regularity and contour ownership may always be
intimately connected (Bertamini et al., 1997; Pizlo &
Stevenson, 1999).

We finish by noting that neural independence of
symmetry and objecthood is entirely consistent with
models of symmetry perception inspired by whole-field
symmetry, where the issue of figure and ground does
not arise. For example, Barlow and Reeves (1979)
measured symmetry discrimination in dot-clouds, and
proposed that the visual system checks for equivalent
dot density in matched regions on either side of the
axis. This model says nothing about the consequences
of dots falling in separate figure or ground areas, and
allows for the possibility that symmetry detection is
independent from other perceptual groupings afforded
by the same image. More generally, it is often
important to recognize highly asymmetrical objects
(e.g., rocks on a path), and possible to perceive regular
layouts of multiple objects that span figure and ground
regions (e.g., cars in a car park). Perhaps obligatory,
low-level interaction between symmetry and object-
hood would mislead us roo often, so these features are
processed independently.

Keywords: symmetry, reflection, translation, ERPs,
alpha desynchronization
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