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Investigation of hemodynamic effect of stent wires on renal arteries in patients with 

abdominal aortic aneurysms treated with suprarenal stent grafts 
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Abstract 

Purpose: The purpose of the study was to investigate the hemodynamic effect of stent 

struts (wires) on renal arteries in patients with abdominal aortic aneurysms (AAA) treated 

with suprarenal stent grafts.  

Materials and Methods: Two sample patients with AAA undergoing multislice CT 

angiography pre-and post-suprarenal fixation of stent grafts were selected for inclusion in 

the study.  Eight juxtarenal models focusing on the renal arteries were generated from the 

multislice CT datasets.  Four types of configurations of stent wires crossing the renal 

artery ostium, namely single wire centrally crossing, single wire peripherally crossing, V-

shaped wire centrally crossing and multiple wires peripherally crossing were simulated in 

the segmented aorta models.  The blood flow pattern, flow velocity, wall pressure and 

wall shear stress at the renal arteries pre-and post-stent grafting were analyzed and 

compared using a two-way fluid structure interaction analysis.  The stent wire thickness 

was simulated with a diameter of 0.4 mm, 1.0 mm and 2.0 mm, and hemodynamic 

analysis was performed at different cardiac cycles. 

Results: The interference of stent wires with renal blood flow was mainly determined by 

the thickness of stent wires, and the type of configuration of stent wires crossing the renal 

ostium.  The flow velocity was reduced by 20-30% in most of the situations when the 

stent wire thickness increased to 1.0 mm and 2.0 mm.  Of 4 types of configuration, the 

single wire crossing centrally resulted in the highest reduction of flow velocity, ranging 

from 21% to 28.9% among three different wire thicknesses.  Wall shear stress was also 

dependent on the wire thickness, which decreased significantly when the wire thickness 

reached 1.0 and 2.0 mm. 
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Conclusion: Our preliminary study showed that the hemodynamic effect of suprarenal 

stent wires in patients with AAA treated with suprarenal stent grafts was determined by 

the thickness of suprarenal stent wires.  Research findings in our study are useful for 

follow-up of patients treated with suprarenal stent grafts to ensure long-term safety of the 

suprarenal fixation. 

Keywords: Abdominal aortic aneurysm, blood flow, flow velocity, suprarenal stent graft, 

simulation, renal ostium 
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Introduction 

Endovascular repair of abdominal aortic aneurysm (AAA) has been reported to be an 

effective alternative to conventional open surgery since its introduction into the clinical 

practice more than a decade ago [1-3].  With experience gathered, it was found that 30-

40% of patients were excluded from the traditional infrarenal fixation of stent grafts due 

to complicated infrarenal aneurysm necks, either because of short necks (less than 10 

mm), severe angulation (more than 60 degrees) or poor quality (extensive calcification or 

presence of thrombus).  Therefore, a modification of the aortic stent grafts, suprarenal 

fixation has been developed to accommodate these patients unsuitable for infrarenal stent 

grafting [4-6].  Suprarenal fixation of stent grafts involves placing an uncovered 

suprarenal component above the renal arteries with aim of acquiring proximal fixation 

without compromising the renal blood flow or renal function.  Although short to mid-

term results are satisfactory, long-term safety of the suprarenal fixation of stent grafts is 

yet to be determined [7, 8]. 

The concern of long-term outcomes of suprarenal fixation is manifested in two folds: 

first, the long-term safety of placing the suprarenal stents across the renal arteries is not 

known with regard to its effect on the renal arteries or renal function; second, the 

interference of suprarenal stent struts/wires with the renal artery ostium in terms of 

morphological changes in relation to the configuration/number of stent wires crossing the 

renal artery ostium is not fully understood.  Our previous study has addressed the latter 

point showing that the renal artery ostium demonstrated morphological changes 

following suprarenal fixation [9], while the effect of stent wires on renal blood flow has 

not been systematically studied.  Therefore, the purpose of this study was to perform a 



 5 

computer simulation based on patients’ data and investigate whether there is any 

significant interference of suprarenal stent wires with subsequent renal blood flow, based 

on variable stent wire crossing and different wire thicknesses. 

Materials and Methods 

Patient data selection 

2 sample patients with AAA undergoing suprarenal fixation of stent grafts were selected 

for inclusion in the study.  The stent grafts used in our study were Zenith AAA 

endovascular stent graft with a suprarenal uncovered component of 2.5 cm placed above 

the renal artery for acquisition of proximal fixation.  Pre-and post-stent grafting CT scans 

were performed with a multislice CT scanner 16x0.5 mm beam collimation (Toshiba 

Medical Imaging Systems, Kingsbury, UK), and scanning protocol was as follows: 

section thickness 1.0 mm, pitch 2.0, reconstruction interval of 1.0 mm and gantry rotation 

time was 0.5 second.  Pre-and post-stent grafting multislice CT angiography scans were 

performed with an intravenous injection of 100 ml of non-ionic contrast media (Niopam 

300, Bracco UK Ltd. High Wycombe) administered at a rate of 2 ml/second with a fixed 

scan delay of 30 seconds.  The left and right renal artery ostia were measured 4.92 mm 

and 4.10 mm, 4.80 mm and 5.20 mm in diameter for patient 1 and 2, respectively.  Table 

1 lists measurements of the length of renal arteries, distance between the entry point 

(abdominal aorta) to the renal arteries in both pre-and post-stent grafting aorta models.   

Configuration of stent wires crossing the renal artery ostium 

Original DICOM data (digital imaging and communication in medicine) pre-and post-

stent grafting were transferred to a workstation equipped with Analyze V 7.0 

(AnalyzeDirect, Inc., Lexana, KS, USA) for generation of 3D reconstructed images.  
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Generation of intraluminal images of the stent wires in relation to the renal artery ostium 

was performed using a CT number thresholding technique, which was described before 

[10].  In these two cases, the suprarenal stent wires were found to cross the renal artery 

ostium in four different configurations, which were previously reported [10, 11], namely: 

single wire centrally crossing (patient 2), single wire peripherally crossing (patient 1), V-

shaped wire centrally crossing (patient 2) and multiple wires peripherally crossing 

(patient 1).  Figure 1 presents the diagrams of these four types of configurations. 

Segmentation of CT volume data 

Segmentation of CT volume data was performed with a semi-automatic segmentation 

technique involving CT number thresholding, region growing and objects creation and 

separation.  For generation of 3D AAA model with inclusion of only main abdominal 

aorta and its branches, the lowest and highest CT thresholds were set at 200 HU and 400 

HU (Hounsfield unit) respectively to remove all of the soft tissues, bone structures and 

stent wires while keeping the contrast-enhanced artery branches; for generation of 3D 

AAA model with inclusion of endovascular stent grafts, the lowest threshold was set at 

500 HU to remove all of the soft tissues and contrast-enhanced vessels while only 

keeping the high-density stent wires.  Figures 2 shows the 3D AAA models from the CT 

data of patient 1 pre-and post-suprarenal stent grafting. 

Generation of aorta mesh models 

After segmentation, 3D surface objects were created using the module of surface 

extractor which is available on the Analyze software package, and the 3D surface objects 

were saved in the STL (stereolithography)’, a common format for computed-aided design 

and rapid prototyping.  The ‘STL’ file was converted into the CAD (computer aided 
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design) model files using the CATIA V5 R18 (Dassault Systèmes, Inc., Suresnes Cedex, 

France). 

The aorta mesh model consists of 3 parts in each patient: part 1 refers to the blood flow 

model of pre- and post-stent grating, while part 2 indicates the artery wall model of pre- 

and post-stent grafting, and part 3 is the blood flow model of post stent grafting with 

placement of the simulated suprarenal stent wires. 

For advanced mesh modelling, the blood flow model (part 1) was generated by 

hexahedral volume meshes using ANSYS ICEM CFD 11 (ANSYS, Inc., Canonsburg, 

PA, USA).  The blood wall model (part 2) was generated by tetrahedral volume meshes 

using ANSYS Meshing 11 (ANSYS, Inc., Canonsburg, PA, USA).  The blood flow 

model with insertion of the suprarenal stent graft (part 3) was generated by tetrahedral 

volume meshes using ANSYS ICEM CFD 11 (ANSYS, Inc., Canonsburg, PA, USA). 

The structure and fluid mesh models of patient 2 are shown in Figure 3.  The maximum 

elements of the blood wall model and flow model were composed of 17,247 and 82,650 

elements, respectively. 

Simulation of suprarenal stent wires in relation to the renal artery ostium 

Although the segmented AAA models were generated with CT number thresholding 

which focuses on the high-density stent wires, detailed configuration of suprarenal stent 

wires crossing the renal artery ostium could not be displayed in the final mesh models.  In 

order to simulate the intraluminal configuration of stent wires crossing the renal artery 

ostium, we generated a few models with a simulated wire thickness of 0.4 mm, 1.0 mm 

and 2.0 mm, respectively.  Figure 4 shows meshing models of the suprarenal stent struts.  
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The stent strut model was defined by tetrahedral volume mesh and mesh elements of stent 

strut model were between 9,790 and 23,471 elements. 

The stent strut model reflects the realistic clinical situation after implantation of 

suprarenal stent grafts in patients with AAA.  The actual wire thickness of the Zenith 

suprarenal stent component is 0.4 mm, so we chose the simulated wire thickness to be 0.4 

mm in diameter.  As there is a potential opportunity for blood materials to build up on the 

stent surface over a certain period of time leading to the thickening of stent wires, we also 

simulated the wire thickness to be 1.0 mm and 2.0 mm respectively in this study.  Before 

simulating the stent struts crossing the renal ostium, the non-strut crossing models were 

first generated as a reference in each patient based on the post-stent grafting data. 

In summary, there were 4 entire aorta models in total (both pre-and post-stent grafting) 

comprising the abdominal aorta, aortic aneurysm, renal arteries and common iliac 

arteries.  In addition, another 8 juxtarenal models focusing only on the renal artery ostium 

were generated to study specifically the flow changes to the renal arteries (one pre-

stenting model plus 3 models with different stent wire thicknesses in each patient).  For 

the four different types of stent wire crossing, we just changed the position of stent wires 

in each model to produce different configuration of wire crossing.  Therefore, altogether 

12 models were tested in our study. 

Computational two-way fluid solid dynamics 

In order to ensure that our analysis reflects the realistic environment of human blood 

vessel, normal physiological hemodynamic conditions should be considered for the 3D 

numerical simulations.  This allows studying the aneurysmal fluid mechanics by taking 

into account the instantaneous fluid forces acting on the wall and the effect of the wall 
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motion on the fluid dynamic field.  The fluid and materials properties for different 

entities were referenced from a previous study [12].  To simulate the realistic situation in 

patients with AAA treated with suprarenal stent grafts, the blood flow was started at the 

level of celiac axis, then inside the aortic aneurysm, and flow out to the renal arteries and 

common iliac arteries.  The boundary conditions are time-dependent [13].  The velocity 

inlet (abdominal aorta at the level of celiac axis) boundary conditions are taken from the 

referenced value showing measurement of the aortic blood velocity (Figure 5A).   A 

time-dependent pressure is also imposed at the outlets (Figure 5B). 

The fluid (blood) is assumed to behave as a Newtonian fluid, as this was known for the 

larger vessels of the human body.  The suprarenal stent within the blood is set as no-

material property.  The fluid density was set to 1060 kg/m3

0       :Continuity =⋅∇ v

 and a viscosity of 0.0027 Pa s, 

corresponding to the standard values cited in the literature [13].  The flow was assumed 

to be incompressible and laminar.  Given these assumptions, the fluid dynamics of the 

system is fully governed by the Navier-Strokes equations, which are shown as following: 

                                                            (1) 

)(in         f      :Momentum 2 tvpvv
t
v FΩ+∇+−∇=∇⋅+
∂
∂ 


µρρ         (2) 

where v  is the blood velocity vector, p  is the blood pressure, ρ  is the blood density, µ  

is the blood viscosity, f  is the body force at time t acting on the fluid per unit mass, ∇  is 

the gradient operator, and )(tF Ω  is the fluid domain at time t . 

The solid (blood wall) is assumed to be elastic material and isotropic.  The wall is set at 

1.0 mm thick in both pre- and post-stented AAA models.   The solid density was set to 

1120 kg/m3, a Poisson ratio of 0.49, and a Young’s modulus of 1.2 MPa, corresponding 
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to the standard values cited in the literature [14].  From these assumptions, the structures 

dynamics of the system are fully governed by the equations showing below: 

)(in         f      :Momentum , ta S
ijiji Ω+= ρσρ                  (3) 

)(on              :condition mEquilibriu  ttn S
iiij Γ=σ             (4) 

)(in              :veConstituti tD S
klijklij Ω= εσ                       (5) 

where ia  is the acceleration of material point, ijσ  is the stress tensor, ρ  is the solid 

density, if  is the force per unit mass at time t , in  is the outward pointing normal on the 

surface wall )(tS Γ , it  is the surface traction vector, ijklD is the Lagrangian elasticity 

tensor, klε  is the strain tensor, and )(tS Ω  is the structural domain at time t . 

In order to validate our results, we performed the simulation using a two-way coupled 

fluid-structure interaction (FSI).  The governing equation of the fluid domain was solved 

using the ANSYS CFX 11 (ANSYS, Inc., Canonsburg, PA, USA). The governing 

equation of the structural domain was solved using the ANSYS Simulation 11 (ANSYS, 

Inc., Canonsburg, PA, USA).  The FSI application was run with ANSYS CFX 11 with 

transient simulation (time-dependent), and the coupling time step is set at 0.025 s, with a 

total duration of 0.9 s with 0.9 s indicating the late diastolic pulsatile waveform.  We 

simulated a single cardiac cycle same as that in vivo condition which is divided into the 

systolic and diastolic phases.  The systolic phase starts from 0 s to 0.6 s while the 

diastolic phase ranges from 0.6 s to 0.9 s.  This was applied to achieve a fully developed 

flow at the side of the renal ostium, as is shown in Figure 6.  The meshes are deformable 

during the CFD analysis. 
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Based on the referenced parameters, the two-way FSI analysis of the simulation was 

performed with the blood flow simulated at different cardiac cycles (systolic and diastolic 

phases) in the aortic aneurysm, renal arteries and common iliac arteries using the ANSYS 

Multiphysic (ANSYS, Inc., Canonsburg, PA, USA).  Blood flow pattern, wall pressure, 

and wall shear stress at the level of renal arteries before and after stent-graft implantation 

were calculated and compared. 

Results 

Hemodynamic analysis was successfully performed in all of these aorta models, based on 

different cardiac cycles.  The general flow patterns generated in the abdominal aorta 

models with placement of stent graft were in agreement with the literature [12-14].  As 

the study focuses on the effect of suprarenal stent struts on the renal arteries, we only 

presented the results related to the renal arteries in terms of flow velocity, flow pattern, 

wall pressure and wall shear stress.  

Hemodynamic analysis-flow velocity at the renal arteries 

Table 2 provides the calculated peak flow velocity to the renal arteries in these simulated 

models.  The flow velocity was calculated at the distal outlets of each renal artery.  The low 

velocity at the right renal artery in patient 2 is due to the relatively large diameter of the 

renal artery.  Our results showed that the flow velocity to the renal artery was mainly 

determined by the thickness of stent wires and type of stent wires crossing in relation to the 

renal artery ostium.  Flow velocity was slightly decreased by up to 5% with a wire 

thickness of 0.4 mm in all types of configuration except the type of singe wire centrally 

crossing.  For the single wire crossing centrally, it was found that the flow velocity to the 

renal artery was decreased by 21.1-28.9%, independent of the thickness of stent wires, as is 
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shown in table 2.  When the stent wire thickness increased to 1.0 and 2.0 mm, flow velocity 

was decreased by more than 10% and as high as nearly 30% in most of the situations, 

indicating that the wire thickness is the determinant factor in the flow analysis. 

Similarly, flow pattern changes to the renal artery in the presence of stent struts crossing 

were dependent on the wire thickness.  The velocity vectors’ effect with a stent wire 

thickness of 0.4 mm, 1.0 mm and 2.0 mm was shown in Figure 7 (B-D) when compared to 

the non-strut crossing (Fig 7A).  As is shown in the images, the laminar flow pattern to the 

renal arteries observed in pre-stent grafting became turbulent in the presence of stent wire 

crossing, and this is especially obvious when a single wire crossed the renal ostium 

centrally (Fig 7 E, F). 

Hemodynamic analysis-wall pressure at the renal arteries 

The maxiaml wall pressure did not show significant changes after implantation of the 

suprarenal stent grafts, even if in the presence of stent struts crossing the renal artery 

ostia.   The wall pressure was found to increase slightly at the proximal part of right renal 

artery after stent struts crossing when the wire thickness increased to 1.0 mm and 2.0 mm 

(Fig 8). 

Hemodynamic analysis-wall shear stress at the renal arteries 

The areas of high wall shear stress are different to the high pressure areas.  The areas of 

high wall shear stress are mainly situated in regions of enhanced recirculation or vertices. 

In our study, these locations are on the inner side of the renal arteries, as shown in Fig 

9A.  After suprarenal stent graft implantation, there is a significant drop in maximum 

wall shear stress, and this is especially apparent when the wire thickness increased to 1.0 
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mm and 2.0mm, as is shown in Fig 9B-D, when compared to the wire thickness of 0.4 

mm (Fig 9B). 

Discussion 

Our preliminary study provides insight into the treatment outcomes of suprarenal fixation 

of stent grafts, although it was only based on two sample patients.  The importance of our 

findings is demonstrated in two unique aspects which are different from previous reports: 

first, the AAA models were generated from real patients’ data, which reflects the actual 

clinical situation, thus we believe our results are valid and can be translated to clinical 

practice.  Second, simulation of stent wires crossing the renal artery ostium was verified 

by previous experience, which demonstrates the type of stent wire configuration in 

relation to the renal artery ostium based on 3D intraluminal visualization.  Moreover, 

various thicknesses of stent wire diameter were simulated in the aorta models to 

demonstrate the potential effect of suprarenal stents on renal blood flow.  Therefore, our 

results could be used as guidance for patients’ follow-up, especially from a long-term 

point of view. 

Previous studies based on clinical data showed the renal function was not significantly 

affected, but morphological change of the renal artery ostium was observed due to 

presence of suprarenal stent wires [9].  Liffman et al in their experimental study using 

computational fluid dynamics analysis concluded that no significant reduction of renal 

blood flow was observed when the renal artery ostia (independent of the diameter of renal 

artery ostia, 3 mm vs 7 mm; or the number of stent wires, single vs multiple) were 

crossed by stent wires [15].  Our results are consistent to their findings to some extent.  

Our analysis shows that reduction of flow velocity was independent of the diameter of 
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renal ostium and the number of stent wires.  However, our results demonstrated findings 

different from others as the type of stent struts encroaching the renal ostium and stent 

wire thickness determine the renal blood flow, with single wire centrally crossing 

producing more than 20% reduction of flow velocity. 

Since it is possible for the blood material to adhere to the wires and thus may affect the 

flow of blood into the renal artery.  This was confirmed by previous experimental study 

showing that small bits of materials were deposited onto the wire, leading to the increase 

of cross-sectional area of the stent wire [15].  Thus, we simulated a wire thickness of 1.0 

and 2.0 mm in our study to reflect this situation. 

Studies using computer-based models have been focused on relationship between 

implanted (or simulated) stent grafts and hemodynamic changes, as well as stent 

migration and risk of rupture [16-18].  However, research on the interference of stent 

wires with renal artery ostium or renal blood flow is scarce.  While mid- and long-term 

results of suprarenal fixation of stent grafts seem satisfactory [7, 8], the long-term safety 

of suprarenal stent grafts is still not fully understood.  This is mainly because of the 

unknown effect of suprarenal stent wires on renal artery ostium from a long-term point of 

view.  Image visualizations can only identify appearance or configuration changes of the 

renal artery ostium resulting from the stent wires crossing or coverage, but fail to present 

information on flow analysis.  Our previous in vitro phantom study concluded that the 

cross-sectional area reduction of the renal artery ostium was determined by the wire 

thickness and number of stent wires crossing the ostium [19].  When the actual wire 

thickness of 0.4 mm was taken into account in the situation of stent strut crossing the 

renal ostium, the cross-sectional area reduction was found to be less than 17%.  However, 
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the reduction of the cross-sectional area of the renal ostium is significantly higher in the 

presence of multiple thicker stent wires (wire diameter between 0.98 and 1.3 mm), 

resulting in a reduction percentage ranging from 26% to 46.7% [19].  This phenomenon 

was also observed in our study indicating the decisive role of stent wire thickness.  

Consequently, this is an important issue that should be considered when dealing with the 

situation of thicker stent wires crossing the renal ostium. 

Based on our results of flow analysis, we suggest vascular surgeons should pay special 

attention to follow-up patients presented with a single stent wire crossing the renal artery 

ostium centrally with potentially thicker diameters.  Recommendations for follow-up of 

these patients include monitoring of renal function at regular periods to ensure the 

adequate perfusion to the renal arteries covered by the stent struts; change of treatment or 

follow-up procedures based on flow analysis, e.g. prophylactic antiplatelet may be 

considered to reduce the possibility of adhesions forming upon stent wires due to 

increased flow turbulence. 

The wall shear stress at the renal arteries was found to decrease significantly following 

suprarenal stent grafting, and this should arise clinical awareness, as low wall shear stress 

is associated with neointimal hyperplasia in either bypass graft or stent [20].  Thus, a low 

shear stress could lead to reduction of the cross-sectional area of renal ostium owing to 

presence of stent wires (because of formation of neointimal hyperplasia on the stent 

surface).  It has been reported that augmentation of wall shear stress is accompanied by a 

local reduction in neointimal hyperplasia [21].  Another potential risk of a low shear 

stress is the formation of artery plaque or atherosclerosis in the aortic branches [22].  

Therefore, from a clinical point of view, hemodynamic analysis of the interference of 
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stent struts with renal arteries is important for understanding the long-term safety of the 

suprarenal stent grafting, although this needs further studies to confirm it. 

Despite the realistic models used in our study, there are some limitations which exist in 

our study.  First, the aorta models were rigid rather than elastic.  In normal physiological 

situation, the artery wall moves with cardiac cycles.  However, we believe our results are 

valid and accurate since the flow analysis was performed using a fluid-structure 

interaction.  Second, only two cases were selected in this study, which is another 

limitation.  Although we tested variable configurations of the stent struts crossing the 

renal artery ostium, not all of the four types of configuration were simulated in these two 

patients.  Further studies composed of more patients with different aortic geometry 

(including different ostial diameters with variable stent struts crossing) should be 

performed so as to draw a robust conclusion.  

In conclusion, our preliminary study using FSI analysis to analyze the hemodynamic 

changes in patients with AAA treated with suprarenal stent grafts demonstrates that the 

effect of stent wires on the renal blood flow was dependent on the thickness of a stent 

wire and the type of stent wire crossing.  A single wire crossing the renal ostium centrally 

resulted in up to nearly 30% reduction of flow velocity to the renal arteries.  When the 

stent wire thickness is simulated at 1.0 mm and 2.0 mm, up to 20% reduction of flow 

velocity was noticed in more than 60% of the tested aorta models.  Our results are 

considered valuable for improving understanding of the long-term outcomes of 

suprarenal fixation of stent grafts. 
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Table 1 Measurements of the length of renal artery and distance between entry point of 
abdominal aorta to the renal artery in two sample patients 
 

Sample 
patients 

Length of renal artery (mm) Distance between aorta and renal artery 
(mm) 

Pre-stent grafting Post-stent grafting Pre-stent grafting Post-stent grafting 

LRA RRA LRA RRA LRA RRA LRA RRA 
Patient 1 19.5 27.1 18 12.3 19.5 27.1 35.3 41.2 
Patient 2 26.5 20.5 21.5 27 46.6 41.6 62.8 57.7 

LRA-left renal artery, RRA-right renal artery 
 
 
 
Table 2 Calculation of flow velocity (peak systolic at 0.225 s) to the renal arteries with 
suprarenal stent struts crossing the renal artery ostium 
 

Sample 
patients/ 

renal arteries 

Type of 
configurations  

Flow velocity without 
a stent wire crossing 

(m/s)  

Flow velocity calculated with 
different stent wire thickness (m/s) 

0.4 mm 1.0 mm 2.0 mm 

Patient 
1 

LRA 
Single wire  
peripherally 

crossing 
0.992 1.042 0.757 0.813 

RRA 
Two wires 

peripherally 
crossing 

1.064 1.045 0.926 0.860 

Patient 
2 

LRA V-shaped wires 
crossing 0.953 0.905 0.899 0.837 

RRA Single wire  
centrally crossing  0.294 0.232 0.211 0.209 

 
LRA-left renal artery, RRA-right renal artery 
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Figure legends 

Figure 1. Diagrams of different types of stent wires crossing the renal artery ostium, 

(a) single wire centrally crossing, (b) single wire peripherally crossing, (c) V-shaped 

wire centrally crossing and (d) multiple wires peripherally crossing. 

Figure 2. Realistic CAD AAA models in patient 1 pre-(A) and post-stent grafting (B). 

Figure 3 shows the mesh models in patient 2. (A) and (C) are the blood wall meshes 

in pre-and post-stent grafting, while (B) and (D) are the blood flow meshes in pre-and 

post-stent grafting. 

Figure 4 shows meshing models of the stent struts with a diameter of 0.4 mm, 1.0 mm 

and 2.0 mm, repsectively (A-C).  

Figure 5A demonstraes flow pulsatile in different cardiac cycles at the abdominal 

aorta, while Fig 5B shows the time-dependent pressure in different cardiac cycles at 

the aortic branches. 

Figure 6.  A complete cardiac cycle was applied to the renal arteries for flow analysis 

in the simulated aorta models. 

Figure 7. Hemodynamic effect of 4 types of stent wires crossing the renal artery 

ostium with a wire thickness of 0.4 mm, 1.0 mm and 2.0 mm on the renal blood flow 

calculated at the peak systolic phase (t = 0.225s).  Figure 7A is the flow analysis in 

patient 1 without presence of stent wires, while Fig 7B-D in the same patient with a 

wire thickness of 0.4 mm, 1.0 mm and 2.0 mm shows the flow analysis at the right 

renal artery with two wires crossing peripherally, and left renal artery with a single 

wire crossing peripherally.  Figure 7 E is the flow analysis in patient 2 without stent 
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crossing, while Fig 7F shows a singel wire centrally crossing the right renal artery 

and V-shaped crossing the left renal artery with a wire thickness of 0.4 mm. 

Figure 8 demonstrates flow analysis of wall pressure at the renal arteries in patient 1.  

The wall pressure was found to increased slightly in the presence of stent wires, 

which is apprent when the wire thickness reaches 1.0 mm and 2.0 mm (Fig 8 C, D) 

when compared to that observed in a wire thickness of 0.4 mm (Fig 8B) and non-wire 

crossing (Fig 8A). 

Figure 9. Wall shear stress at the renal arteries was noticed to decreased significanly 

when the stent wires crossed the renal artery ostia, especially apparent in the presence 

of stent wires with a diameter of 1.0 mm and 2.0, as shown in Fig 9 C and D, 

compared to that observed with a wire thickness of 0.4 mm (Fig 9B) and non-wire 

crossing (Fig 9A).   The types of stent wire crossing in Figure 8 and 9 are a single 

wire crossing the left renal ostium peripherally and two wires crossing the right renal 

ostium peripherally. 

 


	Although the segmented AAA models were generated with CT number thresholding which focuses on the high-density stent wires, detailed configuration of suprarenal stent wires crossing the renal artery ostium could not be displayed in the final mesh mode...
	The stent strut model reflects the realistic clinical situation after implantation of suprarenal stent grafts in patients with AAA.  The actual wire thickness of the Zenith suprarenal stent component is 0.4 mm, so we chose the simulated wire thickness...
	In summary, there were 4 entire aorta models in total (both pre-and post-stent grafting) comprising the abdominal aorta, aortic aneurysm, renal arteries and common iliac arteries.  In addition, another 8 juxtarenal models focusing only on the renal ar...

