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Abstract 

Hereditary hemochromatosis (HFE) variants correlating with body iron levels have shown 

associations with cancer risk, including childhood acute lymphoblastic leukemia (ALL). Using a 

multi-ethnic sample of cases and controls from Houston, TX, we examined two HFE variants 

(rs1800562 and rs1799945), one transferrin receptor gene (TFRC) variant (rs3817672) and three 

additional iron-regulatory gene (IRG) variants (SLC11A2 rs422982; TMPRSS6 rs855791 and 

rs733655) for their associations with childhood ALL. Being positive for either of the HFE 

variants yielded a modestly elevated odds ratio (OR) for childhood ALL risk in males (1.40, 95% 

CI = 0.83 to 2.35), which increased to 2.96 (95% CI = 1.29 to 6.80) in the presence of a 

particular TFRC genotype for rs3817672 (Pinteraction= 0.04). The TFRC genotype also showed an 

ethnicity-specific association, with increased risk observed in non-Hispanic Whites (OR = 2.54, 

95% CI = 1.05 to 6.12; Pinteraction with ethnicity = 0.02). The three additional IRG SNPs all 

showed individual risk associations with childhood ALL in males (OR = 1.52 to 2.60). A 

polygenic model based on the number of variant alleles in five IRG SNPs revealed a linear 

increase in risk among males with the increasing number of variants possessed (OR = 2.0 per 

incremental change, 95% CI = 1.29 to 3.12; P = 0.002). Our results replicated previous HFE risk 

associations with childhood ALL in a US population and demonstrated novel associations for 

IRG SNPs, thereby strengthening the hypothesis that iron excess mediated by genetic variants 

contributes to childhood ALL risk. 

 

1. Introduction 

The hereditary hemochromatosis gene, HFE, has shown multiple associations with cancer 

susceptibility [1-7], including risk for childhood acute lymphoblastic leukemia (ALL) [8], which 

has been replicated [9]. In multiple cancers [1,2], including childhood ALL [9], the association 

of HFE variants with cancer risk gets stronger in interaction with a polymorphism in the 

transferrin receptor gene (TFRC). Since HFE and TFRC proteins biologically interact in iron 

transfer across membranes such as intestinal mucosa and placenta, the observed statistical 

interaction supports the notion that the involvement of HFE variants in cancer risk modification 

is mediated via their effect on body iron levels [10]. Body iron levels have long been known to 

be positively correlated with general cancer risk as several cohort studies have shown [11-14], 



and iron’s carcinogenic effect has been well documented [15]. Thus, HFE associations with 

cancer have strong biological plausibility.   

 Recent genome-wide association studies (GWAS) have identified the HFE variant 

C282Y as a major determinant of body iron levels [10]. The mediation of iron homeostasis by 

genetic variants extends beyond the HFE gene, with the strongest association being TMPRSS6 

rs855791 [16]. We reasoned that if HFE associations are due to their effect on iron levels rather 

than linkage disequilibrium with nearby polymorphisms, other iron regulatory gene (IRG) 

polymorphisms should show similar associations with childhood ALL risk. To test our 

hypothesis that previously observed HFE associations are mediated via their effect on body iron 

levels, we aimed to expand our study beyond HFE variants to additional IRG polymorphisms, 

first by confirming previously shown HFE SNP associations with childhood ALL, and assessing 

novel SNPs in TMPRSS6 and SLC11A2 for their associations. To further test our hypothesis that 

HFE variants modify the risk for childhood ALL via their effects on iron levels, we also included 

the TFRC polymorphism that is known to interact with HFE variants in the genotyping scheme 

to test whether this interaction occurs. The additional IRGs do not interact with TFRC 

biologically, so we did not predict any other interaction. To test our hypothesis, we used a new 

case-control set, which was first validated by replicating known childhood ALL associations 

[17].  

 

2. Subjects & Methods 

2.1 Subjects 

Institutional Review Boards of Baylor College of Medicine (BCM) and Florida 

International University approved the study protocol. The case-control sample was from 

Houston, TX, consisting of 161 incident cases with childhood (<18 years at diagnosis) ALL 

diagnosed at Texas Children’s Hospital from 2007 to 2012, and 231 healthy controls with the 

same age range (<18 yr) contemporaneously and locally recruited. Thus, all subjects were less 

than 18 years of age, and exclusion criteria for both cases and controls were refusal to participate 

in the study and the diagnosis of any other cancer or disease. Representing the age peak typical 

of childhood ALL, 73% of cases were 1 to 5 years old. Subjects and their parents were 

approached to obtain informed consent for provision of epidemiological data with a 

questionnaire and a biological sample. The DNA samples were extracted from saliva or 



peripheral blood samples at BCM. The sample was multiethnic to allow us to examine effect 

modification of childhood ALL risk by ethnicity. Ethnicity was determined by the responses 

provided on the questionnaire by the children’s parents. Our main interest was the contrast 

between non-Hispanic Whites (NHW) and Hispanic Whites (HW), since childhood ALL is very 

rare in African-Americans, and we had a very small number of African-Americans (n=17) in the 

case group. Information on clinical subtype of ALL was collected from medical records, and 

88% of the cases were diagnosed with early precursor B (early pre-B) ALL subtype. 

2.2 SNP selection 

We included two HFE variants known to influence body iron levels commonly known as 

C282Y (rs1800562) and H63D (rs1799945), as well as the TFRC variant S142G (rs3817672), 

which is known to interact with HFE variants in previously reported cancer associations [1,2,9]. 

As other IRG variants, we included the GWAS-identified iron-related SNP TMPRSS6 rs855791 

[16], as well as two additional SNPs we selected also from the TMPRSS6 gene (rs733655) and 

the SLC11A2 gene (rs422982) involved in the non-transferrin receptor-related iron transfer 

across membranes. The last two SNPs were selected as the promoter region haplotype tagging 

SNPs for these two genes. The selected SNP from TMPRSS6 (rs733655) is 32kb away and not in 

linkage disequilibrium with the GWAS-identified marker (rs855791) in the same gene according 

to the HapMap project European population data (r2 = 0.29). Two more SNPs were included as 

ancestry-informative markers (AIMs) to adjust for the ethnic heterogeneity in the multiethnic 

sample to supplement the self-reported ethnicity data. The two SNPs were rs285 and rs2891, 

which were identified as AIMs in previous studies due to their largely different allele frequencies 

in major ancestral human populations [18,19]. Characteristics of each SNP are given in Table I. 

2.3 Genotyping 

TaqMan allelic discrimination assay was the choice of method for genotyping. All SNPs 

were genotyped by TaqMan assays purchased from Life Technologies (Foster City, CA) on 

CFX96 real-time PCR instrument (Bio-Rad, Hercules, CA). The assay ID of each assay is given 

in Table I. 

2.4 Statistical analysis 

Genetic associations (both crude and adjusted) were evaluated by logistic regression 

using Stata v.11 (StataCorp, College Station, TX). Two-way statistical interactions were also 

analyzed by logistic regression by including an interaction (product) term for the genetic variant 



and the potential effect modifier (age, gender or ethnicity) in the explanatory variables in 

multivariable analysis. All statistical tests were two-tailed and threshold for statistical 

significance was set at P ≤ 0.05. All genetic associations, except the TFRC locus, were assessed 

by using the dominant genetic model which corresponds to variant allele positivity and coded as 

1 for heterozygote and variant allele homozygote genotypes, and 0 for the common allele 

homozygosity (referent). Due to the low frequency of their variant alleles, the two HFE SNPs 

were pooled together by creating a new variable for the number of cumulative variant alleles at 

both SNPs (0 for no variant allele, 1 for variant allele at either SNP, 2 for heterozygosity at both 

SNPs (compound heterozygosity) or variant allele homozygosity at either SNP). To be consistent 

with the previous studies, TFRC SNP was analyzed in recessive model (by coding variant allele 

homozygosity as 1 and the other genotypes as 0). A similar approach was used for a polygenic 

risk model using the total number of variant alleles at two HFE variants and three variants in 

non-HFE (TMPRSS6, SLC11A2) IRGs (0 for no variant allele at any SNP, 1 for one or two 

variant alleles at any SNP, 2 for three or more variant alleles at any of the five SNPs). All 

statistical associations in the overall group were adjusted for the ethnicity variable which had 

four categories (NHW, HW, African-Americans, and others). The efficiency of statistical 

adjustment for ethnicity was double-checked by adjustment for each of the AIMs separately. 

Before proceeding to the statistical analysis of genetic associations, Hardy-Weinberg 

disequilibrium was ruled out in controls as a test for gross genotyping errors. Given the number 

of associations examined, we used a slightly more stringent statistical significance threshold of P 

≤ 0.01 in the interpretation of our results. 

 

3. Results 

3.1 HFE C282Y and H63D frequencies in the sample population 

As expected, HFE C282Y mutation was more common in the NHW subjects: variant 

allele frequencies were 0.113, 0.030 and 0.011 in NHWs, HWs, and African-Americans, 

respectively. The H63D variant positivity also had some variation across ethnic groups with 

frequencies of 0.254, 0.151 and 0.032 in NHWs, HWs, and African-Americans, respectively. 

These variations were similar to those observed in HapMap project population samples. Only 

two cases and two controls (all NHWs) were compound heterozygotes for C282Y and H63D.  

3.2 Univariable genetic marker analyses in the overall group 



Genotype frequencies for each SNP were in Hardy-Weinberg equilibrium in the control 

group when analyzed for each ethnicity group. All associations reported below for the whole 

group were adjusted for self-reported ethnicity. Replacing the ethnicity variable by either AIM 

did not appreciably alter the results. As shown in Table II, neither C282Y nor H63D showed an 

overall association with childhood ALL risk. The TFRC SNP, which was included in the study to 

assess its interaction with HFE SNPs did not show any individual association in the overall 

group. The three IRG variants all yielded high ORs in the overall analysis, but only one 

(rs733655) reached statistical significance in the overall analysis (Table II).  

3.3 Gender- and ethnicity-specific analyses and statistical interactions 

For the two TMPRSS6 SNPs, males had risk associations with ORs of 1.91 and 2.60 

(Table III), but statistical interaction with gender did not reach statistical significance. Despite 

yielding greater ORs for males, the male-specific HFE associations did not reach statistical 

significance in individual analysis. Results from pooling of the two HFE variants in one variable 

(as described in the Methods) are shown in Figure I. The bars depict the risk genotype 

frequencies in the case and control groups, and ORs for childhood ALL risk are provided. There 

was no statistically significant association in the overall group (OR = 1.46, P = 0.17; Graph A in 

Figure I), but the pooled variable revealed a promising result in males (OR = 2.09, P = 0.04; 

Graph B in Figure I), which reached statistical significance in interaction with the TFRC variant 

(OR = 4.92, P = 0.002; Graph D in Figure I). Graph C depicts the frequencies and OR for female 

cases/controls, and Graph E shows the frequencies and OR for males with the wild type allele for 

TFRC. 

We explored the TFRC and HFE gene-gene interactions previously observed in multiple 

cancers [1,2], including childhood ALL [9]. In the overall sample, there was no interaction (data 

not shown). Our main group of interest was males because of the previous findings in childhood 

ALL, and also because of generally higher ORs in males in univariable analysis of HFE variants. 

Since the small sample size would not allow a reliable assessment of interactions for rare HFE 

variants, especially C282Y, we used the HFE pooled variant variable for this analysis. In the two 

groups of males with and without the TFRC homozygous genotypes, the ORs were 0.59 (CI = 

0.24 to 1.45) and 4.92 (CI = 1.29 to 6.80), yielding an interaction (Pinteraction= 0.04). We also 

examined interactions of non-HFE SNPs with TFRC. This analysis did not reveal any interaction 



(P = 0.33, 0.46, and 0.96) as expected from the lack of biological interaction between these IRGs 

and TFRC.  

There was no ethnicity-specific association of HFE variants. Ethnicity-specific analyses 

revealed a high OR (2.54, CI= 1.05 to 6.12, P value = 0.04) for the TFRC rs3817672 allele A 

homozygote genotype in NHWs, while the OR was less than 1.0 (non-significant) in Hispanics 

(Pinteraction = 0.02 for ethnicity). Thus, the largest ethnicity-specific difference was the NHW-

specific association of TFRC with borderline statistical significance. The association of the 

TMPRSS6 promoter region tagging SNP rs733655 was equally strong in both ethnicities that 

could be examined in this study (ORs 2.32 and 2.55; Table III). 

3.4 Polygenic risk model 

We constructed a polygenic risk variable consisting of five SNPs in three IRGs as 

described in the Methods section. Analysis using this variable showed that for stepwise increase 

in the number of variant alleles, there was a linear increase in childhood ALL risk in the overall 

group (OR = 1.63, 95% CI = 1.18 to 2.26, P = 0.003), and in males (OR = 2.00, 95% CI = 1.29 

to 3.12, P = 0.002; shown in Figure II), but not in females (OR = 1.26, 95% CI = 0.77 to 2.08, P 

= 0.36) in stratified analyses. In ethnicity-specific analysis, the association remained statistically 

significant in NHW (OR = 2.19, 95% CI = 1.18 to 4.06, P = 0.01), but not in HW (OR = 1.42, 

95% CI = 0.89 to 2.27, P = 0.14).  

None of the associations were lost when we restricted the analysis to early pre-B subtype 

or the cases within the age peak. All associations observed in the whole group were also 

statistically significant in these subgroups sometimes with greater effect size (data not shown).  

 

4. Discussion 

We examined previously reported HFE associations and interactions with TFRC with the 

risk of childhood ALL. In this multi-ethnic sample, we observed associations similar to 

previously reported ones with gender effect, and extended the observations to additional iron 

regulatory gene polymorphisms to provide further support for our hypothesis that HFE and 

TFRC association in childhood ALL is due to their effect on iron homeostasis. The only 

statistically significant gender-specific associations with IRG variants and childhood ALL risk 

were in males, and we also noted a novel ethnicity-specific difference in the association of the 

TFRC variant.  



To increase statistical power, we pooled the two HFE variants to be able to detect their 

associations with childhood ALL risk. The ORs for the pooled variables were always in the risk 

direction for individual SNPs, and were greater in males. When the interaction with the TFRC 

genotype and the gender effect was considered, a more robust association was found, as in a 

previous study [9]. The same interaction was also observed in multiple cancers [1,2] and in 

childhood ALL. While interaction analysis is usually seen as a challenge in terms of statistical 

power, as happened in the present study, the increase in the effect size may compensate for the 

loss of statistical power due to comparison of smaller subsets of the sample. Like any statistical 

association, our results should be considered cautiously. However, similarities with previous 

observations provide sufficient credibility to the cumulative results, which now strongly suggest 

that iron excess, whether environmentally- or genetically-induced, increases the risk for cancer in 

general, and in particular for childhood ALL. As previously postulated [9,20], the mechanism of 

the childhood ALL risk association with HFE variants known to elevate body iron levels may 

include increased materno-fetal iron transport through placenta. This process is mediated by 

HFE and TFRC [21,22], and these genetically-mediated alterations in fetal iron homeostasis may 

also have implications on the developmental origins of health and disease [23].  

 Another novel finding of the present study was the risk associations of previously 

unexamined IRG SNPs (rs422982 and rs733655) with childhood ALL. Together with the 

association of rs855791, a GWAS identified marker for iron levels [16], which reached statistical 

significance only in males, these new findings lend support to our hypothesis that iron 

homeostasis related risk modification in childhood ALL extend beyond HFE/TFRC 

polymorphisms. We do not yet know whether the SNPs selected by us and used in any 

association study for the first time have any correlation with body iron levels. Their locations in 

the promoter regions of crucial IRGs suggest that they will be somewhat involved in some aspect 

of gene function and subsequently in iron homeostasis, but only functional studies can confirm 

their roles. We were not surprised by the lack of interaction between SLC11A2 / TMPRSS6 and 

TFRC since they do not interact biologically. The lack of statistical interaction between these 

additional SNPs and the TFRC SNP suggested the specificity of the observed HFE and TFRC 

interaction.  

The present study highlights the benefits of explorations of effect modification by gender 

or ethnicity. Although such explorations are usually reserved for well powered studies, when 



backed up by previous observations or strong biological hypotheses, stratified analyses 

complemented by statistical interaction analyses are powerful approaches to unravel otherwise 

masked associations. It is only natural that in a multigenic disorder like cancer, effect 

modification will be operational. Researchers usually shy away from analysis of effect 

modification or statistical interaction to avoid performing multiple comparisons and subsequent 

chance findings, but there are ways to rule out chance findings by additional replication studies.  

Besides the limitations already mentioned such as sample size and statistical power, our 

study has another limitation, which has stemmed from one of its strengths. Examination of these 

associations in a multi-ethnic cohort has benefits, but also brings about heterogeneity, which 

should be accounted for during analysis. We had self-reported ethnicity data, but adjustment of 

the results by these data may still leave some residual confounding. We also used two AIMs to 

make sure that the heterogeneity in the population would not result in spurious findings. The 

current practice in well-resourced GWAS studies is to use thousands of AIMs to adjust for 

genetic ancestry, which is particularly crucial when the sample includes recently admixed 

populations such as African Americans or Hispanics. We could not do that, but could include 

two AIMs to control for population heterogeneity. Another limitation of using a multi-ethnic 

sample was the constraints it adds on checking genotyping error. We followed the usual 

safeguards of genotyping error avoidance at the experimental phase, and checked for errors at the 

analysis phase by using Hardy-Weinberg equilibrium testing. This test, however, has to be done 

in each ethnicity subgroup separately. This practice further reduces the statistical power of this 

test and may have caused inefficiency of genotyping error checking. Genotyping errors have the 

potential to cause both false positives and false negatives. Our results basically replicated 

previously observed associations, and there is no overwhelming reason to consider genotyping 

errors as an alternative explanation.  

By mainly replicating the HFE and TFRC interaction in childhood ALL risk association 

and revealing new associations with IRGs, we provided further support for the hypothesis on the 

iron connection in childhood ALL susceptibility. These findings have far reaching implications 

beyond childhood leukemia in the cancer field. We hope that our results will stimulate interest in 

secondary analyses of existing GWAS data on multiple cancers to explore the pathways involved 

in iron homeostasis. We also report novel associations with gender or ethnicity specificity. These 

associations should be explored in already existing datasets for replication. Beyond genetic 



association studies, functional work on whether these polymorphisms indeed mediate placental 

iron transport and whether this effect differs by gender will provide ultimate confirmation of our 

results with translational implications. 
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Table I. Main features of SNPs analyzed 

 

*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position 

(http://www.ncbi.nlm.nih.gov/SNP) 

Gene SNP 
Chromosome 

nucleotide position* 

Minor allele and 

frequency† 
SNP Type Assay ID 

HFE rs1800562 chr6: 26093141 (A) 0.053  
Transition substitution, 

missense mutation 
C___1085595_10 

HFE rs1799945 chr6: 26091179 (G) 0.179  
Transversion substitution,  

missense mutation 
C___1085600_10 

TFRC rs3817672 chr3: 195800811 (G) 0.383  
Transition substitution, 

missense mutation 
C___3259537_10 

SLC11A2 rs422982 chr12: 51406354 (A) 0.246  
Transversion substitution, 

intragenic 
C____570333_10 

TMPRSS6 rs733655 chr22: 37495051 (C) 0.221  
Transition substitution, 

intragenic 
C___3289858_1_ 

TMPRSS6 rs855791 chr22: 37462936 (T) 0.412  
Transition substitution, 

missense mutation 
C___3289902_10 

LPL rs285 chr8: 19815189 (T) 0.500  
Transition substitution, 

intragenic 
C__12104266_10 

ITGAE rs2891 chr17: 3705526 (G) 0.496  
Transition substitution, 

intragenic 
C___3211308_20 



†Minor allele frequencies are from a reference Caucasian population (U.S. residents of northern and western European ancestry) 

genotyped in HapMap project   



 

 

Table II. Univariable analyses of associations with childhood ALL risk* 
 

SNP 
OR 

(95% CI) 
P value 

HFE rs1800562 
1.37 

(0.52 to 3.60) 
0.52 

HFE rs1799945 
1.33 

(0.74 to 2.38) 
0.35 

TFRC rs3817672 
0.8 

(0.52 to 1.23) 
0.31 

SLC11A2 rs422982 
1.55 

(1.01 to 2.37) 
0.04 

TMPRSS6 rs733655 
2.06 

(1.33 to 3.20) 
0.001 

TMPRSS6 rs855791 
1.41 

(0.91 to 2.18) 
0.12 

 

*Adjusted for self-reported ethnicity (non-Hispanic White, Hispanic White, African-Americans, 

and others) 

 

  



 

Table III. HFE and non-HFE associations with childhood ALL in gender and 

ethnicity groups (ORs and 95% CIs) 
 

  
Females 

(n=176) 

Males 

(n=216) 

Non-Hispanic 

Whites 

(n=115) 

Hispanic Whites 

(n=170) 

HFE rs1800562 

0.40 

(0.08 to 1.89) 

P = 0.25   

3.41 

(0.86 to 13.52) 

P = 0.08 

1.78 

(0.51 to 6.14) 

P = 0.36     

0.91 

(0.15 to 5.58) 

P = 0.92 

  Pinteraction = 0.09 Pinteraction = 0.55 

HFE rs1799945 

1.01 

(0.41 to 2.48) 

P = 0.98 

1.51 

(0.69 to 3.31) 

P = 0.30       

1.26 

(0.53 to 2.99) 

P = 0.60 

0.87 

(0.37 to 2.08) 

P = 0.76       

  Pinteraction = 0.78 Pinteraction = 0.56 

TFRC rs3817672 

1.66 

(0.71 to 3.86) 

P = 0.24 

0.7 

(0.31 to 1.57) 

P = 0.38 

2.54 

(1.05 to 6.12) 

P = 0.04 

0.69 

(0.37 to 1.27) 

P = 0.23      

  Pinteraction = 0.21 Pinteraction = 0.02 

SLC11A2 rs422982 

1.58 

(0.83 to 2.99) 

P =  0.17 

1.52 

(0.86 to 2.68) 

P = 0.15 

1.47 

(0.70 to 3.10) 

P = 0.31 

1.91 

(0.99 to 3.68) 

0.055      

  Pinteraction = 1.00 Pinteraction = 0.61 

TMPRSS6 rs733655 

1.56 

(0.81 to 3.03) 

P = 0.19      

2.6 

(1.44 to 4.70) 

P = 0.002 

2.35 

(1.07 to 5.16) 

P = 0.03 

2.52 

(1.26 to 5.04) 

P = 0.009 

  Pinteraction = 0.19 Pinteraction = 0.90 

TMPRSS6 rs855791 

1.12 

(0.58 to 2.14) 

P = 0.74 

1.91 

(1.04 to 3.51) 

P = 0.04 

1.71 

(0.78 to 3.72)  

P = 0.18 

1.22 

(0.62 to 2.38) 

P = 0.57 

  Pinteraction = 0.40 Pinteraction = 0.52 

 

*Adjusted for self-reported ethnicity (non-Hispanic white, Hispanic white, African-Americans, 

and others) 

 



 

 
 

 

 

 

 

 

 

 

 

 

Figure I: Risk genotype frequencies and pooled HFE association in childhood ALL in case 

and control groups, by gender and TFRC genotype group.  
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      Figure II: Polygenic risk variable consisting of five IRG SNPs  
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