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Abstract— In this paper, a novel multi-stage approach to 

knowledge extraction from a time-series is proposed. A given time-

series is modeled as a sequence of well-known primitive patterns 

with the purpose of identifying first-order probabilistic transition 

rules for prediction. The first stage of the proposed model 

segments a time-series into structurally distinct temporal blocks of 

non-uniform length such that each block possesses a relatively low 

variation of dynamic slope. In the second stage, the temporal 

segments thus obtained are normalized and matched with one of 

four well-known primitive patterns using a fuzzy matching 

algorithm. Finally, the sequence of matched segments is used to 

represent the time-series as a set of four directed graphs 

corresponding to the four primitive patterns. Each vertex in the 

graphs represents a horizontal partition of the time-series and 

each directed edge indicates the transitions between two such 

partitions caused by the occurrence of one or more temporal 

segments. In the test phase, the graphs are employed to predict 

possible future values of the time-series. Experiments carried out 

on the TAIEX close-price time-series indicate a high prediction 

accuracy, thereby validating the use of the model for real-life 

forecasting applications.  

Keywords— Knowledge extraction, time-series segmentation, 

fuzzy matching, directed graph.  

I.  INTRODUCTION 

A time-series is a discrete sequence of real-valued 

observations obtained by sampling a measurable phenomenon at 

regular intervals of time. Accurate prediction of future values of 

a given time-series has been a well-known topic for research. 

However, the behavior of a time-series is often dependent on 

multiple factors, many of which are unknown and erratic in 

nature. Therefore, the general approach employed for time-

series analysis is to develop a mathematical model of the series 

and to make predictions based on the model. Quite a few 

approaches have been developed in this direction. 

Among the well-known methodologies that have found their 

way into time-series analysis, the application of fuzzy set theory 

[1] is worth special mention. The fuzzy time-series was first 

defined by Song and Chissom in their works [2]-[4]. The general 

approach proposed by them was to consider the dynamic range 

of the time-series as a universe of discourse and to construct 

fuzzy sets on disjoint contiguous intervals, called partitions 

defined on the universe. The time-series is then fuzzified by 

replacing each data point by the fuzzy set to which it belongs 

with highest membership value. The fuzzified time-series can be 

utilized to derive first and higher order fuzzy logical relations 

(FLRs) in order to make predictions on possible future values of 

the time-series.  

Several improvements have been proposed on the original 

model of Song and Chissom. In [5], the authors proposed to 

weight the FLRs based on the chronological order of their 

occurrence, thereby taking into account the recurrence of FLRs. 

The incorporation of secondary and multifactor heuristics in the 

modeling of a fuzzy time-series was proposed in [6] and 

extended in [7], [8] for better prediction accuracy. Other 

interesting works in this regard include efficient time-series 

partitioning and fuzzification schemes [9], [10], application of 

optimization techniques like PSO [11] and ant-colony 

optimization [12], fuzzy variation groups [13] and others. 

In the current paper, we model a time-series as a sequence of 

well-known primitive patterns occurring in contiguous time-

slots. The proposed approach has three primary stages. The first 

stage deals with semantic segmentation of a time-series into 

disjoint temporal blocks of non-uniform length such that each 

segment can be efficiently categorized into one of the known 

primitive patterns. The proposed segmentation algorithm 

identifies temporal regions where the dynamic slope of the time-

series possesses a high variance. Such temporal regions are then 

marked as segment boundaries to indicate a structural change in 

the time-series. The advantages of the segmentation algorithm 

lie primarily in its simplicity and low computational overhead. 

The time-segments thus obtained in the previous step are 

normalized and represented as a sequence of 10 points to achieve 

uniformity in their respective lengths. The second stage involves 

matching the segments with one of four well-known patterns, 

namely, the linear rise, the linear fall, the Gaussian bell curve 

and the inverse Gaussian curve (or the inverted bell). A fuzzy 

matching algorithm is employed to derive a similarity metric 

between a normalized segment and a primitive pattern. This 

provides for real-time approximate classification of segments 

without the need to train any computational model. 



In the third stage, the information obtained from the previous 

steps is used to represent the time-series in the form of a set of 

weighted directed graphs where each graph corresponds to a 

primitive pattern. The nodes in the graph for each pattern P 

represent horizontal partitions in the time-series and the 

weighted directed edge between two nodes denotes the 

probability of occurrence of transitions between the two 

corresponding partitions caused by one or more time-segments 

classified to pattern P. The graphs can be utilized to derive first 

or higher order probabilistic transition rules as well as make 

predictions based on such derived rules. Hence, the graphs are 

called predictor graphs. 

Experiments carried out on the TAIEX [14] economic close-

price time-series for the period 1990-1999 indicate a low 

average RMSE of 88.48 outperforming competitive models. 

Figure 1 provides a schematic block diagram for the proposed 

model. 

 

 

 

 
 

 

The rest of the paper is organized as follows. Section II deals 
with a brief overview of fuzzy sets and time-series partitioning. 
Section III discusses the proposed segmentation algorithm. The 
fuzzy matching algorithm is described in Section IV. Section V 
deals the formation of predictor graphs. Experiments and 
performance analysis of the proposed model are discussed in 
Section VI. Conclusions are listed in Section VII. 

II. PRELIMINARIES 

In this section, we provide an overview of a few concepts 
required to understand the remainder of this paper. They include 
a brief description of fuzzy sets and fuzzy membership functions 
as well as concepts related to partitioning of a time-series. 

A. Fuzzy Sets 

    Definition 1: A fuzzy set A defined on a universe of discourse 
U is a set of 2-tuples as follows:  
                                 {( , ( )) | }AA x x x U                                (1) 

where x is an element of the universe U and ( ) [0,1]A x   

represents the membership value of x in the fuzzy set A. In 
simple terms, a fuzzy set is a generalization of a conventional set 
where an element may belong with a membership value lying in 
the range [0,1]. On the other hand, an element belongs to a 
conventional set with a membership value of either 1 (member 
of the set) or 0 (not a member of the set). 
    Definition 2: For a given fuzzy set A defined on a universe of 
discourse U, a function of the form : [0,1]A U   which maps 

each element x U  to its corresponding membership value 

( ) [0,1]A x   in the fuzzy set A is called a fuzzy membership 

function. Such a membership function is often required when 
the universe of discourse is a continuous (or infinite) set, thereby 
making it impossible to define a finite number of 2-tuples for a 
fuzzy set. 

    Fuzzy sets are generally employed to describe collections of 
objects which are not precisely defined. For instance, a set of 
very tall people or a set of numbers which are very close to 0 can 
be defined using fuzzy sets. The linguistic terms “very tall” and 
“very close to 0” are subjective and dependent on individual 
judgment and hence, conventional sets cannot be used to 
properly define such collections. 
 
B. Time-Series Partitioning  

    Definition 3: A time-series is defined as a sequence of 

discrete values or measurements obtained by sampling a 

measurable phenomenon at successive points in time. Let y be 

some measurable entity and let ( )y t be the sampled value of the 

entity obtained at time-instant t. Then the time-series C  of 

length n can be defined as the vector 

                   
1 2[ ( ),  (2 ),  ..., ( )] [ ,  ,  ..., ]nC y T y T y nT c c c             (2) 

where n is the number of samples obtained and T is the sampling 

interval. 

    Definition 4: Let min max( ) [ , ]R C c c denote the dynamic range 

of the time-series C  where 
minc and 

maxc  are the minimum and 

maximum values of the series respectively. Dividing the range 

( )R C into k non-overlapping, contiguous intervals of the form 

1 1 1 2 2 2[ , ],  [ , ],  ..., [ , ]k k kP p p P p p P p p         where            

                               1,  {2,3,..., }i ip p i k 

                              (3) 

is called partitioning and each such interval jP  is called a 

partition. Clearly, 1 minp c   and max.kp c   Figure 2 shows a 

time-series partitioned into 7 equi-spaced partitions. 

 

 
Fig. 2. Partitioning a sample time-series into 7 equi-spaced partitions P1 to P7 

III. EDGE-PROFILE TIME-SERIES SEGMENTATION (EPTS) 

In this section, we propose a technique for efficient time-
series segmentation by incorporating the variation of dynamic 
slope of the time-series as the primary segmentation criterion. 
The idea behind semantic segmentation of a time-series is to 
identify time points where the series displays a drastic change in 
slope. In the proposed approach, the time-series is viewed as a 
piecewise linear curve where each pair of consecutive data 
points in the series is joined by a straight line, called an edge. 
Let us consider an ideal time-series without the presence of low 
level noisy fluctuations. The slopes of the edges joining 
consecutive data points show a high variation only in regions 
where the series displays a change in its behavioral pattern. This 
intuition is applied to our approach where we identify such 
temporal regions and mark them as segment boundaries in the 
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Fig. 1. Schematic block-diagram of proposed model 
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time-series. The data points of the series lying between two 
consecutive segment boundaries is called a temporal segment or 
a time block. Since, the segmentation criterion is based on the 
relative variance of edge slopes in the series, the proposed 
technique is named Edge Profile Time-Series Segmentation 
(EPTS). The advantage of the algorithm lies primarily in its 
simplicity and low computational complexity with respect to 
other existing time-series segmentation algorithms. The 
following definitions formally explain the proposed approach. 

A. Definitions 

Definition 5: Let ic  and 1ic   be two consecutive data points of 

a given time-series ,C  sampled at time-instants iT  and ( 1)i T  

respectively. Then, the straight line 
1,2l  formed between the 

points 1 ( , )ip iT c  and 2 1(( 1) , )ip i T c    is called an edge of the 

time-series and the slope of the edge is given by                                                  

                  1 1
1 2

( ) ( )
( , ) .

(( 1) )

i i i ic c c c
slope p p

i T iT T

  
 

 
               (4) 

Example 1: Let a given time-series be 

1 2 3 4 5[ ,  ,  ,  ,  ] [3,4,6,2,1]C c c c c c   where the values are sampled 

at time-instants 1, 2, 3, 4 and 5 respectively. The points in 2-

dimensional space formed by the time-series data points as 

ordinates and the time-instants as abscissas are respectively,

1 2 3 4(1,3),  (2,4),  (3,6),  (4,2)p p p p    and 5 (5,1).p  Then the 

edge 1,2l  formed between the two consecutive data points 1c  

and 2c  is given by the straight line equation between points 1p  

and 2 ,p as given in equation (5).                                                      

                        
1,2

3 4 3
2 0

1 2 1

y
l x y

x

 
     

 
                    (5) 

Clearly, the slope of the edge 1,2l  is 1 2( , ) 1.slope p p    In a 

similar manner, the slopes for the remaining edges 2,3 3,4,  l l  and 

4,5l  of the time-series are given by 

2 3 3 4( , ) 2,     ( , ) 4slope p p slope p p     and 
4 5 ( , ) 1slope p p  

respectively.                                                                                             □ 

Definition 6: A finite sequence of consecutive edges in a time-

series is called an edge-window. Let w be the chosen width of 

each edge-window. Then the edge-window starting at the thi  

time-series data point is given as follows:                                                                 

                             
, 1 1, 2 1,[ ,  ,  ..., ].i i i i i i w i wW l l l                           (6) 

For a given edge-window, we also define a slope-window 

which contains the slope of every edge in the edge-window. For 

the window given in equation (6), the corresponding slope-

window is given as                                                  

     
1 1, 2 1[ ( , ),  ( ),  ..., ( , )].i i i i i i w i wS slope p p slope p p slope p p         (7) 

The amount of variation in the slopes contained in a slope 

window provides insight into the behavior of the time-series for 

the corresponding temporal region. The higher the variation of 

slopes, the greater the chances of the time-series displaying a 

change in its behavioral pattern. Hence, the variation of slopes 

in a slope-window is used to derive the segmentation criterion 

of the proposed algorithm. 

Example 2: In this example, we demonstrate the formation of 

edge-windows and slope-windows on the time-series given in 

Example 1. Let the chosen window width be 3. Hence, the edge-

windows formed from the time-series are 
1 1,2 2,3 3,4[ ,  ,  ]W l l l  and 

2 2,3 3,4 4,5[ ,  ,  ].W l l l  The corresponding slope-windows of the 

time-series are                                                           

    
1 1 2 2, 3 3 4[ ( , ),  ( ),  ( , )] [ 1, 2, 4],S slope p p slope p p slope p p       (8)     

   
2 2 3 3, 4 4 5[ ( , ),  ( ),  ( , )] [ 2, 4, 1].S slope p p slope p p slope p p        (9) 

Segmentation criterion: As mentioned before, the occurrence 

of high variance in the slopes of a slope-window indicates an 

underlying change in the structural pattern of the time-series at 

the corresponding temporal region. Hence, in the proposed 

algorithm, we choose high variance slope-windows to form 

segment boundaries in the time-series. Let ( )S denote the 

variance of the slopes in the slope window .S  If the variance 

( )S  is greater than a user-provided threshold ,hT the slope 

window S is chosen to form a segment boundary. Let , 1i il   be 

the edge occurring in the middle of the chosen slope-window. 

Clearly, there are two time-series data points ic  and 1ic   at each 

end of the edge , 1.i il   In the current paper, we place the segment 

boundary at 1ic  although that is a completely arbitrary decision. 

Other possible choices for placing the segment boundary can be 

the point ic  or the mean of ic  and 1.ic   

B. Proposed Segmentation Algorithm 

The proposed segmentation technique has three main stages. 

The first stage involves pre-processing of the time-series in 

order to remove low level noisy fluctuations which might 

perturb the decision of the segmentation algorithm. There are 

quite a few ways of doing this. In this paper, we employ the 

well-known Gaussian smoothing [15] technique in order to 

smooth the time-series to remove low level noisy fluctuations. 

The second stage employs the segmentation algorithm to 

identify segment boundaries in the time-series. However, it may 

so happen that two consecutive segment boundaries are placed 

very close to each other if the high variance condition for 

segmentation persists over multiple consecutive slope-

windows. There are a few ways to avoid this scenario. The first 

is to shift the slope-window by more than one unit in the 

direction of increasing time, whenever a segment boundary is 

placed. This will reduce the possibility of two consecutive 

slope-windows satisfying the high variance segmentation 

criterion. The second approach is to re-process the segmented 

time-series such that the multiple closely placed segment 

boundaries are replaced by a single boundary. In this paper, we 

adopt the latter option as the third stage in order to maintain 

coherent shifting of the slope-window over the entire time-

series. The three proposed stages of the segmentation technique 

are illustrated in Figure 3. The EPTS algorithm is formally 

presented in Pseudo Code 1. 
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Fig. 3. Block diagram of proposed segmentation approach 



 

Pseudo Code 1: EPTS Algorithm 

Input: A time-series of the form 1 2[ ,  ,  ...,  ]nC c c c , and user 

defined parameters, namely the slope-window width w and 

the slope-variance threshold Th. 

Output: A vector of time-series index values  

1 2[ ,  ,  ...,  ]mI i i i  denoting the time instants where a 

segment boundary is placed. 

BEGIN 

    FOR each edge-window jW in the time-series

,  {1,  2,  ...,  },C j n w   DO 

        Compute the slope-window jS following equation (7); 

        Compute the variance ( )jS  of slope values in the 

window ;jS  

        IF ( )j hS T   THEN 

            Place a segment boundary at the middle edge of the 

window jW and at the corresponding time-series data 

point given by 

2

.
w

j

c
 

 
 

 Insert 
2

w
j

 
  
 

 in the vector ;I  

        ENDIF 

    END FOR 

END 

IV. FUZZY SEGMENT MATCHING 

    In this section, we propose a technique to match each 

temporal segment obtained in the previous step to one of four 

basic primitive patterns: i) linear rise, ii) linear fall, iii) 

Gaussian bell curve, iii) inverted Gaussian bell curve as shown 

in Figure 4. The task of classifying a temporal segment to one 

of a given set of shapes can be performed in a number of ways. 

A classic approach is to train a pattern classifier to identify the 

class or shape to which a temporal segment bears maximum 

similarity. However, such an approach requires a relatively 

large dataset to be created for the purpose of training the 

classifier. Furthermore, the training process also involves 

considerable computational cost. Hence, we propose a 

matching scheme which does not involve any training and can 

work in real time to identify the representative pattern for a 

given temporal segment. 

      For the purpose of matching, each segment is first 

represented by a vector of length 10 so as to achieve uniformity 

in the temporal length of the segments. Next the segments are 

mean-normalized in order to remove the effects of varying 

ranges of different segments which may lead to incorrect match 

results. Finally, a fuzzy matching scheme is employed to derive 
 

 

 

 

 

a similarity metric between a given temporal segment and a 

primitive pattern. 

A. Fuzzy Similarity Metric 

      Let a primitive pattern P  be represented by a sequence of 

10 consecutive points as shown below: 

                                
1 2 10[ ,  ,  ...,  ].P p p p                                (10) 

Let 
maxp  and 

minp  be the maximum and minimum values of the 

sequence P  respectively. We define the range 

min max[ , ]U p k p k    where k is an empirically chosen 

constant, as the universe of discourse for representing the 

primitive pattern by a sequence of 10 fuzzy sets, one for each 

point in the pattern. The fuzzy set defined for the point 
ip  

denotes the linguistic term CLOSE TO
ip . Thus, few of the 

appropriate membership functions which can be applied to 

define the fuzzy set are the Gaussian membership function and 

the triangular membership function, where the maximum value 

of 1 is attained by the function at the point .ip  In the current 

paper, we define the triangular membership function for point

ip   as follows: 

                 

( ) ( ) if ( )

        = ( ) if ( )

        = 0 otherwise

i
i i i

i
i i

x p r
x p r x p

r

p r x
p x p r

r


 

   

 
                      (11) 

 

where r is defined as a certain percentage of the range 

max min( ).p p  Given a mean-normalized temporal segment 

1 2 10[ ,  ,  ..., ],S s s s the similarity between the segment S  and 

pattern ,P  is defined as the summation of the individual 

membership values ( )i is  of each point 
is  in the corresponding 

fuzzy sets for the pattern .P  This is given in equation (12) and 

is illustrated in Figure 5. 

                              
10

1

( , ) ( )i i

i

similarity S P s


                            (12)                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                   

 
(a) (b) (c) (d) 

Fig. 4. Four primitive patterns: (a) Linear rise, (b) Linear fall , (c) 

Gaussian Bell curve, (d) Inverted Gaussian curve 

U 

Triangular 

membership function 

 

 

0.9 0.5 0.05

5 

0 
0 

0.1 

0.2 

0.6 

1 

0.8 

0 

x 

10 
9 

8 
7 

6 
5 

4 
3 

2 
1 

1 

i 

Fig. 5. Computation of fuzzy similarity metric between a given pattern 𝑷    and 

a normalized temporal segment  𝑺   . A triangular fuzzy membership function is 
used for each of the 10 points of the pattern where U represents the universe 

of discourse. 



B. Fuzzy Matching Algorithm 

      Having derived the fuzzy similarity metric in the previous 

step, the matching scheme becomes relatively straightforward. 

For every normalized temporal segment ,S  its fuzzy similarity 

is computed with each of the four primitive patterns. The 

segment is classified to pattern 
iP  if 

        ( , ) ( , ) {1,2,3,4}.i jsimilarity S P similarity S P j                 (13) 

A point worth mentioning here is that there may be certain 

temporal segments which do not properly represent any of the 

four primitive patterns which we have used. Hence, we keep a 

separate class of such outlier (or anomalous) segments. Let a 

segment S  be classified to a pattern 
iP  following equation (13). 

The segment is called an outlier if 

                                  ( , )i tsimilarity S P R                                (14) 

where tR denotes a user-provided rejection threshold. In essence, 

if the segment is not similar enough to any of the given patterns, 
it is an outlier. The fuzzy matching algorithm is formally 
presented in Pseudo Code 2. 

 Pseudo Code 2: Fuzzy Matching Algorithm 

Input: A normalized segment 
1 2 10[ ,  ,  ..., ],S s s s  a set of four 

primitive patterns 
1 2 3 4{ , , , }P P P PP where each pattern is 

represented by a sequence of 10 points and a rejection 

threshold .tR  

Output: The pattern 
iP  which represents the segment .S  

BEGIN 

    FOR each pattern 
iP  in the set P,  DO 

        Compute fuzzy similarity metric ( , )isimilarity S P

between S and 
iP  following equation (12); 

    END FOR 

    IF ( , ) ( , ) i jsimilarity S P similarity S P j   AND

( , )i tsimilarity S P R  THEN 

           Output 
iP  as the representative pattern; 

    ENDIF 

END 

V. PREDICTOR GRAPHS 

      This section deals with the representation of knowledge 

obtained from the previous two steps in the form of a set of four 

weighted directed graphs. The nodes in each graph represent 

horizontal partitions of the time-series and the weighted 

directed edge between two nodes represents the transitions from 

the partition of the head node to the partition of the tail node 

caused by the occurrence of one or more temporal segments. In 

the prediction phase, given a certain starting partition, each 

graph is used to make a prediction on a possible future value of 

the time-series. The overall forecast of the model is the mean of 

the individual predictions. The primary advantage of the 

proposed prediction scheme is that the effects of different 

primitives are separately learned and utilized to make 

individual predictions, thereby providing the flexibility of 

predicting the outcomes of individual primitives on the time-

series.  

A. Construction of predictor graphs 

      We define and construct four graphs 
1 2 3 4{ , , , }G G G G by using 

the following steps: 

      Step 1. The time-series is partitioned into q equi-spaced 

intervals or partitions (Definition 4). In each graph 

, {1,2,3,4},pG p  a vertex 
iv  is constructed for every partition 

.ip  Hence, a total of q vertices are constructed in each graph.   

      Step 2.  Let there be d temporal segments represented by 

pattern ,xP  which cause a transition from partition 
ip  to other 

partitions. If 'd  of the above mentioned segments produce a 

transition to partition ,jp  we insert a directed arc from the 

vertex 
iv  to vertex 

jv in the graph
xG (corresponding to 

xP ). The 

weight attached to this newly created arc is given by 

                                    
'

( , ) ( )i j

d
v v

d
                                          (15)                 

which approximates the probability of transition from partition 

ip  to partition ,jp due to the occurrence of the pattern .xP  This 

step is carried out for every pattern. It should be noted that the 

sum of the weights attached to edges coming out from a vertex 

is 1.          
      Figure 6 illustrates the construction of four predictor graphs 
from a sample synthetic time-series which has been segmented 
and classified. 
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Fig. 6. Construction of predictor graphs from a given segmented, classified 
and partitioned time-series: (a) A synthetic time-series is segmented and each 

temporal segment has been classified. For the purpose of constructing 

predictor graphs, the time-series has been partitioned into 5 partitions. (b) 
Predictor graphs constructed from the processed time-series shown in (a). 



B. Prediction of future time-series values 

      Once the predictor graphs are constructed, the model can be 

used to make predictions on possible future values of the time-

series. Let the partition corresponding to the current day be .curp

Then, for each graph , {1,2,3,4},pG p the prediction is given by  

                           
1

( ( , ) ( ))
N

p cur i i

i

Pr v v mid p


                             (16) 

where N is the total number of partitions, ( , )cur iv v is the edge-

weight of the directed edge from the vertex 
curv  corresponding 

to 
curp  to the vertex ,iv and ( )imid p represents the mid-point of 

the partition .ip In essence, the prediction is a weighted sum of 

partition mid-points to which a possible transition can take 

place due to the occurrence of a temporal segment. The overall 

prediction of the model is given by the mean of the individual 

predictions as shown below. 

                                     
4

1

1

4
p

p

Pr Pr


                                         (17)  

 

VI. EXPERIMENTS AND RESULTS 

      In this section, we present the results obtained by 

performing experiments on the TAIEX [14] economic close-

price time-series for the period 1990-1999. For each year, we 

partition the time-series into seven equi-spaced partitions, 

namely, EXTREMELY LOW, VERY LOW, LOW, MEDIUM, 

HIGH, VERY HIGH and EXTREMELY HIGH. A higher 

number of partitions is not preferable as the transitions that we 

observe are caused by temporal segments consisting of multiple 

consecutive time-series data points and hence, only the 

partitions containing the end-points of a segment possess an 

incoming or outgoing arc in the graph. A large number of 

partitions will produce many nodes in the predictor graph many 

of which will never be connected by an edge. 

      For each year, from 1990 to 1999, the model is trained for 

the months January to October and the prediction performance 

is tested on the months November and December. It should be 

noted that the model predicts the possible time-series data point 

which will be obtained after the duration of an average segment 

length. Hence, for each prediction we consider the starting 

partition of the day earlier from the day of prediction by the 

average segment length. Figure 7 illustrates the segmented and 

partitioned time-series as well as the predictor graphs obtained 

on the training phase for the economic years 1991, 1994, and 

1997. Table 1 provides a comparative analysis of the proposed 

model in comparison with other existing models in the 

literature. The well-known RMSE error metric is used to test 

the performance of the models. The results for the other existing 

models are obtained from [12].  

      The experiments are carried out using MATLAB as a 

coding platform under a Windows 7 OS powered by Intel Core 

i7 processor with a system clock of 2.30 GHz and a RAM 

capacity of 8 GB. The average time, over the experimental 

period of 1990-1999, required to train the model is 2.6832 

seconds.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) 

Fig. 7. Predictor graphs obtained from segmented TAIEX close-price 
time-series for the years (a) 1991, (b) 1994, (c) 1997. The entire 

TAIEX time-series is partitioned into intervals P1 to P7 (shown by 

horizontal lines), and the close-price series for each year is separately 

segmented where the segment boundaries are shown by vertical lines. 
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      It is evident from Table 1 that the proposed model, with an 
average RMSE error of 88.48 outperforms the next best model 
by 1.0733 % for the prediction of TAIEX close-price time-
series. This indicates that the model can be effectively used for 
real life stock market trading and investment applications. 

VII. CONCLUSION 

      In this paper, we have presented a novel technique for 

modeling a time-series with effective applications in 

forecasting. The proposed model comprises three stages. The 

first stage is used for semantic segmentation of the time-series 

into distinct temporal segments of non-uniform length such that 

each segment possesses a coherence in its dynamic slope. The 

proposed EPTS algorithm provides a computationally light-

weight approach to finding optimal segment boundaries in the 

time-series. The second stage employs a fuzzy matching 

technique to match the temporal segments obtained in the first 

step with one of four primitive patterns, i) linear rise, ii) linear 

fall, iii) Gaussian bell curve and iv) inverted Gaussian curve. 

The proposed fuzzy matching scheme does not require any 

training and can classify segments in real-time thus, providing 

an edge over traditional pattern classifiers which have to be 

trained on a dataset. 

      The third stage represents the acquired information in the 

form of a set of four weighted di-graphs corresponding to the 

four primitive patterns. The graphs can be directly used for 

prediction or can also be used to generate weighted probabilistic 

transition rules of first or higher order. Furthermore, the graphs 

individually provide an insight into the effects of each of the 

primitive patterns on the time-series. Experiments carried out 

on the TAIEX close-price economic time-series indicate a low 

RMSE error value compared to existing fuzzy time-series 

models in the literature. Thus, the proposed model can be used 

effectively for time-series forecasting and prediction 

applications.  
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TABLE I 

COMPARISON OF PREDICTION PERFORMANCE OF PROPOSED MODEL WITH EXISTING MODELS USING THE RMSE METRIC 

                                          Years 
 

 

Models 

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Average 

1.Conventional models [5] 220  80 60 110 112 79 54 148 167 149 117.9 

2.Weighted models [5] 227 61 67 105 135 70 54 133 151 142 114.5 

3.Chen and Chen  [13] 172.89 72.87 43.44 103.21 78.63 66.66 59.75 139.68 124.44 115.47 97.70 

4. Chen et. al [8] 174.62 43.22 42.66 104.17 94.6 54.24 50.5 138.51 117.87 101.33 92.17 

5. Chen and Kao [11] 156.47 56.50 36.45 126.45 62.57 105.52 51.50 125.33 104.12 87.63 91.25 

6.Cai et. al [12] 187.10 39.58 39.37 101.80 76.32 56.05 49.45 123.98 118.41 102.34 89.44 

7.Proposed model  184.65 34.42 35.21 109.63 67.96 78.21 52.34 115.81 101.69 104.83 88.48 

 

 


