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Abstract— The main notion of this paper is to identify the 

cognitive load during a mental arithmetic task experiment using 

fNIRS signals. The first objective is to classify the difficulty level 

and the state of inactivity during the given task. To identify the 

classes, the feature vectors have to undergo all the possible steps 

of a pattern classification problem. In this paper, we have 

developed a novel Feature Selection technique to reduce the 

dimension of the feature vectors by omitting the redundant 

features. For this purpose, an objective function depending upon 

the class density or likelihood functions is optimized using the 

well-known Differential Evolution algorithm. General type-2 

fuzzy classifier is used for subsequent classification step. The 

proposed Feature selection technique gives a satisfactory 

accuracy results over principal component analysis. Also the 

fuzzy classifier outperforms the other well-known classifier like 

support vector machine, k-nearest neighborhood. The load of a 

subject undergoing the experiment is measured at a particular 

class relying upon the mean type- 1 fuzzy value of all feature 

entities.  

Keywords—Brain computer interfacing, functional near-

infrared spectroscopy, fuzzy type-2 classifier, principal component 

analysis, differential evolution algorithm.   

 

I.  INTRODUCTION 

In recent years, development of brain computer interfacing 
(BCI) [1]-[2] systems has taken a considerable amount of 
concentration from scientific communities. The main purpose 
of BCI research is to model and develop systems with an 
intention to create a direct communication medium between 
brains and outside world without involving muscles or 
peripheral nervous system for those who are suffering from 
motor-neuron disease [3]. In BCI, external visual or auditory 
stimuli are provided to the user. With user‟s intention, brain 
signals in terms of electric potential or concentration change 
of hemoglobin in blood vessels of inner tissue are generated. 
These signals are acquired and classified such that the user‟s 
intention can be executed to control external devices or 
computer such as wheel chair [3]-[5], mind-driven motion of 
robots [6]-[8], thought-controlled driving [9]-[10], and also 
prosthetic devices [11]-[12]. There are two types of signal 
acquisition technique namely invasive and non-invasive. To 
avoid surgical approach and high cost, nowadays scientists are 

prone towards using non-invasive techniques like 
Electroencephalogram (EEG) [13], functional Nera Infrared 
Spectroscopy (fNIRS) [14], functional Magnetic Resonance 
Imaging (fMRI) [15] to collect brain signals. 

 In this paper, we have used fNIRS signals for cognitive 
load detection in mental arithmetic task experiment. In case of 
fNIRS signal, the change in the optical properties due to 
change in the concentration of oxy-hemoglobin (HbO) and 
deoxy-hemoglobin (HbR) in the blood vessels of the tissues is 
captured [14]. The photons of the light within the near infrared 
range can penetrate the several outer layers of the brain 
including the cranium, meninges and the fluid surrounding the 
brain. The light undergoes several optical phenomena like 
scattering, diffusion, refraction, reflection. The amount of the 
reflected photons from the inner tissues comes out several 
centimetres above the scalp with respect to the source 
location. It is captured using the appropriately placed IR 
source-detector pairs and the attenuation is computed using 
the modified Beer-Lambert law [14]. The change of 
attenuation can also be expressed linearly in term of change in 

concentration of [HbO] and [HbR] as,  

  ,HbO HbO HbR HbRA c c BL       (1) 

where, x is the specific light intensity (mol
-1

m
-1

) and xc is 

the concentration of the absorber (mol), B is the differential 
path length factor, and L is the distance between source and 
detector (m). x is used as the dummy index for HbO and HbR.  

fNIRS signals have huge importance in developing BCI 
systems using motor imagery signal in driving data to 
cognitive load detection with the help of mental arithmetic 
(MA) [16] task as it provides us with both spatial and temporal 
information unlike EEG and fMRI, which have high values of 
only one of them. For mental arithmetic task, the fNIRS 
signals are taken from the prefrontal region of the brain [16].  

This paper aims for the detection of cognitive load on the 
basis of the fuzzified output of the feature vectors. The 
difficulty level is classified using general type-2 [17]-[19] 
classifier based on the assumption that difficulty level of 
problems may seem different to different subjects. Though the 
difficulty level of the problems are defined pre-
experimentation, there exists some uncertainty in finding out 
appropriate difficulty level for each problem for each subject 
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taking part in the experiment. The general type-2 fuzzy 
classifier is used, as it provides better perspective in defining 
the uncertainty than the normal type-1 fuzzy classifier. The 
second novelty of this work lies in the feature selection (FS) 
step, where likelihood based objective function is designed 
with necessary mathematical approach. This selection 
technique identifies the most appropriate features from the 
original feature vector depending upon the class conditional 
density functions by optimizing a cost function using 
Differential Evolution (DE) [20] algorithm. 

The paper is organized as follows. Section II describes the 
proposed framework including a proposed FS technique and 
fuzzy classifier for difficulty level determination and cognitive 
load detection. Section III covers up the experimental set up 
that includes the timeline of the used stimulus. In section IV 
the performance of the classifier with statistical analysis is 
included. At last, the paper is concluded in section V. 

II. PROPOSED FRAMEWORK 

The goal of our work is to classify the different difficulty 
levels along with the state of inactivity encountered during 
mental ability task experiment. Since it is a classification 
problem, the solution procedure includes four major steps – 
preprocessing, feature extraction (FE), feature selection (FS), 
classification. During preprocessing stage, the noise and any 
other artifacts are filtered out and the signals of interest are 
gathered for further use. After the noise-removed signals are 
accumulated, suitable features are extracted from the raw 
discrete time data streams. To remove any redundancy present 
in the feature vectors obtained in the previous step, FS 
technique must be used, such that in subsequent stage, the 
classifiers can be trained properly and the chance of getting 
over trained or under trained can be avoided for better 
classification accuracy. In this section, we proposed a novel 
approach towards feature selection and a generalized type-2 
fuzzy set (GT2FS) based classifier. These approaches are 
illustrated below with sufficient details. 

A. Preprocessing and Noise Rremoval 

While conducting the experiment, it is certain that various 
kinds of noises cause disturbance in the data stream of fNIRS. 
These noises can be divided into two categories in broad sense 
- experimental noise, physiological noise [21]. Experimental 
noise or error is generated from the motion artifacts such as 
head motion which results in the dislocation of optodes. These 
can be visualized in the fNIRS data as spike artifacts due to 
abrupt change in light intensity as the optodes change their 
positions. Physiological noise includes several kinds of 
artifacts due to heartbeat (1-1.5 Hz), blood pressure 
fluctuations or Mayer wave (around 0.1 Hz), respiration (0.2 – 
0.5 Hz) [21] etc.  

There are several band pass and advance adaptive filtering 
techniques are available [21] for removal of these noises. 
During this work we have used Chebyshev band pass filter 
with cutoff frequencies 0.1 Hz and 0.6 Hz such that majority 
of these physiological noises such as Mayer wave, respiration 
noise are removed. In the next step advanced filtering using 
Independent Component Analysis (ICA) [22]-[23] has been 

used for removal of many other physiological noises. ICA 
helps in restoring original hemodynamic signal from noisy 
multi-source data by first isolating the main IC and then 
accumulating the ICs along with the primary IC using the 
associated weights derived from their t-values. 

B. Likelihood based Feature Selection 

Let 1 2{ , , }N D NX X X X
  

  be a set of N pattern vectors or 

data points, each having D features. Given such DNX matrix, 

the object is to find a feature matrix N nX , where n D .  The 

notion of this FS technique is to select the features which 
involve in significant increment of likelihood of a feature 
vector as a whole within its own class and decrement of 
likelihood in other classes. The probability of the feature 

vector c
iX


 with prior information that class c has already 

appeared in the experiment is given by ( / )c
ip X c


. Similarly, 

the probability of the feature vector c
iX


 with prior information 

that class d has already appeared in the experiment is given 

by ( / )c
ip X d


.  Now if an iterative optimization technique is 

used, objective is to maximize the difference between intra and 
inter-class likelihood function which can be expressed 
mathematically as,  

1
1

,

( / ) ( / )c c
i iK

d d c

p X c p X d


 

 
 

. (2) 

Thus, the overall objective function considering all the 
feature vectors of all the classes can be written as, 

1
1

, ,

( / ) ( / )c c
i iK

c i i c d d c

J p X c p X d
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(3) 

Let, c
iX


be the thi vector belong to class c, c


be the mean 

vector of class c, 
c  be the co-variance matrix of class c and 

( / ) ~ ( , )c cp X c N  
 

. By modifying equation (2) and neglecting 

higher order terms, we have, 

1 2.J L L  , (4) 

where, scale factor (0,10]  
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Equation (4) is maximized using Differential Evolution 
(DE) algorithm. To initialize population vectors, string vectors 
of dimension D consisting of „1‟ (true) and „0‟ (false) are 
constructed. The true value at a position indicates the inclusion 
of the feature value of that particular index into the lower 
dimensional feature vectors. These low dimensional feature 
vectors are used to obtain the value of the cost function of 
equation (4) assuming that their original class definitions have 
not been changed. The string vectors are updated iteratively 
using DE/rand/1/bin [20] technique. The scale factor  is 

chosen experimentally to maintain a compatibility between the 

two values 1L and 2L . After optimization the best string 

vectors found so far is used for reduction of the original 
feature vectors. Now, when a new unknown feature vector 
comes into sight for testing, this string vector helps the 
recognizer to down select the features.   

C. Classification and Load Detection 

The next step after feature selection is classification. The 
Gaussian fuzzy membership functions for each feature entity 
are developed for different subjects for a particular class. If 
there is S number of subject available for the experiment, then 
we obtain S number of Gaussian membership curve for a 
particular feature entity in a class. We also consider the 
secondary membership to be Gaussian in nature where the 
mean and variance are computed using the information from 
upper membership (UMF) and lower membership function 
(LMF) [17]-[18]. 

 There exists different kind of rules for type reduction [19] 
of a general type-2 fuzzy sets. When a feature vector with 
unknown class label is given to the system, we compute the 
type-1 membership value of a feature entity by the following 
mathematical expression, 
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where, ( )F x is the primary membership value of feature F at 

a value x and ( , ( ))FJ x x  is the secondary membership value 

of the primary membership ( )F x . The summation is taken 

over all the primary membership values found from the S 
number of subjects between UMF and LMF. We find all of the 
membership values of all the features for all the classes and 
store them in matrix F whose rows are indicating the 
membership values of the features for a class and columns are 
indicating the membership value of a feature entity in all the 
classes.  

After getting the matrix F, we find the average membership 
value in a particular by summing along the column of a matrix, 
expressed as, 
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(10) 

 
The class with highest average membership value is the 

class corresponds to the unknown feature vector. 

After determining the class, we now compute the load on 
each subject by the value of the average membership in a class.  

III. EXPERIMNTS AND RESULTS 

This section includes a brief description of fNIRS device 
used, experimental setup along with subject and stimuli 
details, and   experiments: to i) extract fNIRS features, ii) 
select the most significant features from a large pool of 
extracted features, iii) detect cognitive load for easy, moderate 
and hard mental tasks, iv) compare the classifier performance 
and v) to validate classifier performance using McNemar‟s 
statistical test. 

A. fNIRS Device 

The experiment has been performed at Artificial 
Intelligence Lab, Jadavpur University, where the brain 
response of human subjects is captured using a popular brain-
imaging device called fNIRS (Fig. 1). The selection of this 
device for the present problem is obvious because of its non-
invasiveness, capability to localize and measure blood 
oxygenation, low-cost and portability [24]. It can be shown 
form Fig. 1(b) that fNIRS band that has been used in this 
experiment, comprising 4 infra-red (IR) light sources (sensors) 
and 10 detectors. The path from IR source to detector of an 
fNIRS device is termed as channels, which provides a measure 
of oxy-hemoglobin (HbO) and de-oxy-hemoglobin (HbR) 
blood concentration. Therefore, the present fNIRS band 
captures brain images from 16 channels when the band is 
attached to the forehead of human subjects during the 
experiment. 



 

B. Experimental Set-up 

Fig. 2 shows an experimental framework; where a subject 
is asked to perform mental mathematical/logical operations 
only by pointing the correct answer from a set of four options. 
fNIRS band is placed on her forehead to measure cerebral 
blood flow during the trial. Eight such healthy subjects of ages 
between 22 and 26 years are selected to perform the 
experiments. They are instructed to restrict their movement in 
order to avoid unwanted movement-related artifacts. 

 

An experimental trial contains five mental 
mathematical/logical problems, each of 20 seconds and a 5-
second rest between each problem. For the present problem, 
three kinds of experimental trial have been prepared based on 
three difficulty levels: easy (E), moderate (M) and hard (H). 
Each subject has to perform each of these three trials for 7 
times, resulting in 35 experimental instances for each 
difficulty level. The cognitive load of the subjects is also 
classified into three distinct levels including low, medium and 
high, depending on the difficulty levels: E, M and H 
respectively.     

C. Experiment 1: Feature Extraction 

Feature extraction (FE) is a very important step in pattern 
classification problem, since signals representing a specific 
pattern contains some primitive features that can best describe 
the pattern itself. In this experiment, we too select a list of 
features that can be used to extract necessary information from 
fNIRS data to detect the cognitive load of human subjects. We 
consider seven following feature sets. 
(i)   F1: mean values of HbO concentration  
(ii)   F2: mean value of HBR concentration 
(iii) F3: mean value of HbO + HbR concentration 
(iv) F4: mean value of HbO-HbR concentration 
(v)   F5: standard deviation of HbO+HbR concentration 
(vi) F6: standard deviation of HbO-HbR concentration and  
(vii) F7: average slope of HbO-HbR concentration. 

 To perform FE, we start with fNIRS data acquired for 
three different levels of cognitive tasks: E, M and H. For each 
kind of difficulty level, we obtain HbO and HbR data, each 
having dimension of 35×16×40, where, 35 represents the 
number of experimental instances, 16 represents the number of 
channels of fNIRS and 40 represents the samples. To extract 
first feature set F1, we take mean of HbO data across samples 
recorded by each channel and obtain 16 features for each of 35 
instances. Therefore, F1 contains mean-HbO features having 
dimension of 35×16. In similar fashion, feature sets F2-F7 is 
prepared by determining their respective 16 features for 35 
instances, which finally present a feature matrix of 35×112 
dimension for each difficulty level.  

 A clear discrimination in concentration level from 16 
channels has been observed for each feature set. For better 
understanding, we provide feature level discrimination 
between mean of HbO concentration determined from 16 
channels, while the subject is performing cognitive tasks 
during one experimental trial.  Fig. 3, 4 and 5 present the 
feature level discrimination between mean of HbO 
concentration determined from 16 channels for E, M and H 
levels respectively. It is evident from the figures that features 
become quite discriminating with the increase of the difficulty 
level while performing cognitive task. 
 

 
 
 

 
Fig. 1. fNIRS device to capture brain images during cognitive tasks 

 

 
Fig. 2. A subject is performing cognitive tasks while brain images are 

captured using fNIRS device 

 

 

 

 
Fig. 3. Feature level discrimination between mean values of HbO 

concentration taken from 16 channels for easy cognitive tasks  

 



 
 
 

 
 

Feature level discrimination has also been observed for the 

remaining six feature sets, when extracted for three difficulty 

levels. However, these graphs cannot be presented because of 

space complexity.    

D. Experiment 2: Feature Selection 

Selection of appropriate features is necessary to correctly 

classify any pattern recognition problem, if the extracted 

feature set is found significantly large. Having a large 

dimensional feature set (here, 112), this experiment also 

utilizes a DE-induced likelihood-based feature selection (FS) 

technique that optimally selects 25 most significant features 

for further classification. 

 The performance of the proposed FS technique is 

compared with the well-known principal component type-2 

analysis (PCA), when the selected features are fed to the fuzzy 

classifier. Result is given in Table I, wherefrom it can be 

concluded from the table that the proposed FS technique 

provides better classification accuracy than PCA [25]. 

 

 

 

E. Experiment 3: Cognitive Load Detection for Different 
Difficulty Levels 

This experiment deals with classification of cognitive load 
into three classes: low, medium and hard and also determine 
subjective load for E, M, and H levels of cognitive tasks. For 
this we determine fuzzy membership values for each level 
(class) of cognitive load: low, medium and hard. For a 
particular class, we quantified the range of fuzzy memberships 
(0,1] in three levels as shown in the Table II. 

  

     The membership ranges, as mentioned in Table II, are used 

to detect subjective load while the particular subject is offered 

easy, moderate and hard cognitive tasks one by one. The 

cognitive load for randomly selected four subjects are 

presented in Table III, which gives a clear indication that 

using the proposed technique, cognitive load differs subject to 

subject for the same degree of complexity.      

 

 

 

Fig. 4. Feature level discrimination between mean values of HbO 
concentration taken from 16 channels for moderate cognitive tasks  

 

 

 

Fig. 5. Feature level discrimination between mean values of HbO 

concentration taken from 16 channels for hard cognitive tasks  

 

TABLE I: COMPARISON BETWEEN MEAN AND STANDARD 

DEVIATION OF FUZZY TYPE-2 CLASSIFIER WITH PCA BASED 

AND PROPOSED LIKELIHOOD BASED FS TECHNIQUE 

Features 
Dimensions 

Average Classifier Accuracy  

(in %) 

Statistical 

Significance 

PCA + Fuzzy 
Type-2 

Classifier 

Proposed 

likelihood + 

Fuzzy Type-2 
Classifier 

 

 
112  

(Reduced to 25) 

88.791 

(0.01407) 
92.597 

(0.01207) 
+ 

    

 

 

TABLE II: MEASUREMENT OF COGNITIVE LOAD ACCORDING TO 

AVERAGE FUZZY MEMBERSHIP VALUES  

Range of Fuzzy Membership 
Values 

Cognitive Load 

0.0-0.3 Low 

0.3-0.7 Medium 

0.7-1.0 High 

 
 

TABLE III: SUBJECT WISE COGNITIVE LOAD DETECTION 
FOR 4 SUBJECTS    

CORRESPONDSTO TABLE II 

 
 

Class 
Subject  

Load (In Alphabetic Form) 

Easy Moderate Hard 

1 Low Medium Medium 

2 Medium High High 

3 Low Low Medium 

4 Medium High High 

 



      In order to detect cognitive load distribution of the subjects 

with increasing difficulty level, oxygenation level is captured 

from fNIRS and presented in Fig. 6 (a)-(d).  

 

 

From Fig. 6 (a)-(d), we can observe the change in 

oxygenated blood volume of a subject with the increase in 

difficulty level of a task. From the color bar shown in figure, it 

is clear that there is a high rise of brain activity with the 

increase in oxygenation, the highest of which is represented by 

yellow color, whereas the lowest brain activation is 

represented by blue color. Now, from fig. 6(a), it is evident 

that there requires less oxygenated blood during inactive (rest) 

situation. In addition, it is also prominent from fig. 6 (a) that in 

inactive situation, brain activity becomes low, which results in 

the appearance of blue region. Fig. 6 (b) shows the 

oxygenation level during easy task performance, where blue 

regions as well as its intensity tend to get lower. In fig. 6(c), 

difficulty level of the task becomes moderate, where the 

human brain needs to perform more activity, thus flow of 

oxygenated blood tends to get higher, so more 

reddish/yellowish region appears, whereas blue region 

decreases significantly. Lastly, Fig. 6 (d) shows the 

oxygenation for hard task. This task requires the highest brain 

activation, which is evident from only the red/yellow regions 

near the forebrain, and no de-oxygenation takes place.        

F. Experiment 4: Proposed Classifier Performance 

We have compared type-2 fuzzy classifier performance using 

proposed likelihood-based FS algorithm with linear support 

vector machine (LSVM) [26], k-nearest neighbor (kNN) [27] 

and support vector machine with radial basis function (SVM-

RBF) [28] classifiers (Table IV). Table IV indicates that the 

proposed likelihood-based FS induced type 2 fuzzy classifier 

attains the highest classification accuracy (above 90% in each 

case) as compared to its standard competitors. The last column 

of the table represents statistical significance of the difference 

of the means of best two algorithms. Positive (+) significance 

means that if we use two-tailed test, then the t value of 49 

degrees of freedom becomes significant at a 0.05 level of 

significance. Negative (-) significance indicates not 

statistically significant and „NA‟ represents the cases for 

which two or more algorithms best accuracy results.  

 Table V provides the individual class performance by 

using confusion matrix of four different classes (easy, 

moderate, hard and inactivity) while implementing type-2 

fuzzy classifier and proposed likelihood-based FS technique. 

Table V indicates that the classification accuracy for the 

individual class is high, over 90%. 

 

 

 
 

 

(a) 

 

(b) 

 

 

(c) 

 (d) 

Fig. 6. Oxygenation level recorded from 14 sensor-detector pair. 

 (a): inactive condition, (b): easy task, (c): moderate task, (d): hard task  

TABLE IV: MEAN AND STANDARD DEVIATION OF CLASSIFIER ACCURACY USING PROPOSED LIKELIHOOD-BASED TECHNIQUE 

Features 
Dimensions 

 

 

Difficulty 
Level / Class 

Average Classifier Accuracy 

 (In %) 
Statistical  

Significance 
L-SVM             KNN 

 

SVM-RBF  
 

Type-2 Fuzzy 

Classifier 

 
 

 

 
112  

(Reduced to 25) 

Easy 
 

Moderate 

 
Hard 

 

Inactivity 
 

75.156 
(0.01936) 

72.309 

(0.01584) 
71.473 

(0.01575) 

74.794 
(0.02941) 

 

77.431 
(0.0) 

76.139 

(0.01894) 
73.164 

(0.01795) 

76.981 
(0.01349) 

 

83.174 
(0.01493) 

80.197 

(0.01346) 
76.197 

(0.01976) 

76.197 
(0.01976) 

93.797 

(0.01949) 

92.647 

(0.01719) 

90.794 

(0.01019) 

93.147 

(0.02009) 

+ 
 

+ 

 
+ 

 

+ 

 



 
 

 

G. Experiment 5: McNemar’s Statistical Test  

McNemar‟s test [29] is one popular statistical test to compare 

the relative performance of the proposed algorithm with 

existing standard techniques. Here, we too apply McNemar‟s 

test to compare performance of the proposed likelihood-based 

feature selection induced type-2 fuzzy classifier with the 

above mentioned three standard classifiers including LSVM, 

kNN and SVM-RBF. The results of Mcnemar‟s test, as 

reported in Table VI depends on the value of the parameter p, 

where p indicates the estimated probability 

of rejecting the null hypothesis of a study question when that 

hypothesis is true. Table VI confirms that the proposed 

classifier outperforms all its competitors by a wider margin. 

 

IV. CONCLUSIONS 

 

This paper proposes an interesting approach to detect 

cognitive load of human subjects using fNIRS signal. Seven 

different feature sets are utilized here to identify right features 

to classify cognitive load. The fuzzy membership ranges have 

been defined to detect subjective load while the particular 

subject performs easy, moderate and hard cognitive tasks.      
Cognitive load distribution of the subject with increasing 

difficulty level is analyzed from the oxygenation level 

recorded using fNIRS device. It is clear from the experimental 

results that the proposed likelihood-based FS induced type 2 

fuzzy classifier attains the highest classification accuracy 

(above 90% in each case) in comparison to its standard 

competitors including LSVM, kNN and SVM-RBF. 

Experiment also reveals that individual class performance 

(easy, moderate, hard and inactivity) by using type-2 fuzzy 

classifier and proposed likelihood-based FS technique is high, 

over 90%. 
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