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Abstract— Protein interactions are central to structural and 
functional organization of the cell. Understanding biological 
processes thus relies on a comprehensive knowledge of different 
types of protein–protein interactions (PPIs) and interaction 
mechanisms. This paper formulates the PPI prediction problem 
as a multi-objective optimization problem. The focus here is to 
jointly maximize i) the number of common neighbors of the 
proteins predicted to be interacting, ii) their functional similarity,
and iii) the ratio between their individual accessible solvent area 
and that of the corresponding protein-protein complex. The 
above multi-objective optimization problem is solved using a 
fusion of the differential evolution for multi-objective 
optimization and the stochastic learning automata. Here the 
former is employed to globally explore the search space and the 
latter for the adaptive tuning of the control parameters of the 
algorithm. Experiments undertaken reveal that the proposed PPI 
prediction technique outperforms existing methods with respect 
to sensitivity, specificity, and F1 score.   

Keywords—protein–protein interaction networks; annotation; 
accessible solvent area; stochastic learning automata; differential 
evolution for multi-objective optimization.

I.   INTRODUCTION  
Proteins are involved in many essential processes within 

the cell such as metabolism, cell structure, immune response,
and cell signaling [1]. Proteins rarely act in isolation; rather 
they function in the crowded medium of other molecules and 
proteins. Proteins interact with other proteins to form protein–
protein interactions (PPI). PPIs are of interest in biology 
because they regulate roughly all cellular processes, including 
metabolic cycles, DNA transcription and replication, different 
signaling cascades and many additional processes. Collections 
of interactions among proteins form a complex interaction 
network in the cell. The more we know about proteins, the 
more we see them as parts of complex networks or pathways 
rather than isolated entities. The function of a protein can be 
viewed by its position within this cellular interaction network 
[2]. 

The importance of understanding the PPI interactions has 
prompted the development of various experimental methods 
used in measuring them. High-throughput functional genomics 
approaches are needed to bridge the gap between the raw 
sequence information and the relevant biochemical and 
medical information. Computational methods are required for 
discovering interactions that are not accessible to high 

throughput methods. A number of computational approaches 
for protein interaction discovery have been developed over 
recent years [3]. These methods differ in feature information 
used for protein interaction prediction. Many studies have 
demonstrated that knowing the tools and being familiar with 
the databases is important for new research in PPI analysis to 
be conducted [4].  

In this paper, the prediction of possible interaction between 
two proteins is based on maximizing three scoring functions 
based on: 1) the number of common neighbor shared by the 
two proteins predicted to be interacting, 2) similarity of their 
functions, and 3) the ratio between their individual accessible 
solvent area and that of the corresponding protein-protein 
complex. The first criterion of the objective function is based 
on the topological feature of the proteins. The PPI network is 
characterized by several topological properties [5]. One of the 
topological features is the number of common neighbors 
shared by the proteins in the PPI network. It has been observed 
that if two proteins share a large number of common neighbors 
in the network then the two proteins are predicted to be 
interacting [6]. The second criterion of the objective function is 
based on gene ontology (GO) annotation of proteins. GO 
annotation has been identified as one of the strongest predictors 
for protein interactions [7]. The final criterion is based on 
accessible solvent area (ASA) of protein. The important 
properties of macromolecules like proteins, DNA and RNA 
are related to their interaction with the surrounding water 
molecules as they are designed by the natural evolutionary 
process to function in the environment of water solutions. 
Since the determination of the protein-solvent interaction is 
very difficult, several approaches have been proposed to 
replace these interactions with approximated potentials. One 
such approximation is solvation energy. The solvation energy 
of the atoms or atomic groups is proportional to the atomic 
surface exposed to the solvent [8], which is calculated using 
ASA. Sharing common neighbors between proteins may not 
always confirm the desired structural properties of the 
interacting proteins (suitable for formation of protein-protein 
complex). Similarly, different proteins may be found to possess 
a large number of shared neighbors but with rare functional 
similarity required to validate the real world interaction. Thus, 
it can be concluded that these three properties are mutually 
independent and hence need to be optimized simultaneously 
and individually to validate the predicted PPIs. This justifies 



the formulation of the PPI prediction problem in a multi-
objective optimization framework. 

The PPI problem refers to determining the possible 
interacting protein pairs and is in general a combinatorial 
optimization problem, which is usually NP hard [9]. To obtain 
approximate solutions to the problem in a finite time for NP
hard problems, usually heuristics are used. In this paper, a 
novel meta-heuristic algorithm is proposed that jointly 
performs the global exploration and the local refinement in the 
optimization process, by using the differential evolution for 
multi-objective optimization (DEMO) [10] and the stochastic 
learning automata (SLA) [11].  

Exploration and exploitation are used to keep track of the 
efficiency of an evolutionary multi-objective optimization
algorithm in locating the global optima. In reality, the control 
parameter (scale factor) of DEMO needs to be adaptively 
tuned during the search process to effectively counter balance 
the exploration and exploitation capabilities, which in turn 
helps in balancing the run-time complexity and the
computational accuracy. SLA is used here to achieve it. 

This paper is an approach to improve the work proposed in 
[12] significantly. In [12], the authors used firefly algorithm 
with non-dominated sorting (FANS), whereas the present 
version examines the scope of DEMO with SLA. The PPI 
network in this paper has been encoded as a one-dimensional 
vector of size one more than the possible number of 
interactions possible in a PPI network. The elements of the 
vector are the weights of the connection between the proteins 
and the last element of the vector contains the threshold value 
based on which the connection is established between the 
proteins. The inclusion of number of common neighbors of 
proteins and accessible solvent area in the objective
formulation and the learning of the parameters of DEMO by 
using SLA is also done. All these above mentioned point
results in significant improvement in performance as indicated 
by three useful metrics, namely specificity, sensitivity, and F1 
score.  

The rest of the paper is divided into five sections. Section II 
gives a brief idea about the formulation of the PPI prediction
problem and explains the criteria used. In section III, DEMO-
SLA algorithm is proposed. Section IV presents the 
experimental settings and the results. Section V concludes the 
paper.

II. PROBLEM FORMULATION

This section attempts to formulate the PPI prediction as a 
multi-objective optimization problem. The characteristic 
features used to develop the objective functions are illustrated 
here. These objective functions on simultaneous maximization
returns the desired network.    
A. Formation of a Protein-Protein Interaction Network 

A PPI network with N proteins may have a maximum of 
N×(N 1)/2 interactions, if self-interactions are ignored. The 
observation has motivated us to represent the PPI network by a 
vector Z  of dimension 1×D where  

( 1) 2 1D N N .  (1)

The m-th element of Z , denoted by Zm [0, 1], for m=[1, 2, 
…, D–1], symbolizes the predicted weight of interaction wi,j 
between proteins pi and pj, for i= [1, 2, …, N–1] and j= [i+1, 
i+2, …, N], such that 

( 1)( 1)
2

i im N i j .  (2) 

The D-th element, ZD [0, 1], denotes the threshold value, 
Th. The proteins pi and pj are predicted to be interacting if wi,j

Th. An example of Z for representing the interaction weights 
of five proteins (N=5) in a PPI networkis given in Fig. 1. The 
first ten elements of Z are used to decode the weights of 
possible interaction between proteins. The eleventh 
component of Z denotes the threshold Th.  

Fig. 1 Example of vector representation of a PPI network with 4 proteins

The weight of interaction wi,j between proteins pi and pj (for 
i= [1, 2, …, N–1] and j= [i+1, i+2, …, N]) can be identified by 
decoding Z using (2). For example, for proteins p1 and p3 (i.e., 
i=1 and j=3), the value of m is 2, as obtained from (2). It 
implies that the weight of interaction w1,3 between proteins p1 
and p3 can be decoded from the 2nd component of Z , giving 
w1,3=Z2=0.68. The decoded vector now can be represented as 
follows. 

Fig. 2 Example of decoding vector representing a PPI network with 4 proteins

After decoding the weights, they are individually compared 
to ZD= Z11=Th to identify the predicted non-interacting protein 
pairs.It is evident from Fig. 2 that proteins p1 and p3 are 
predicted to be interacting as w1,3(=0.68) > Th(=0.58), while 
entailing non-interaction between proteins p3 and p4 with 
w3,4(=0.38) <Th(=0.58). After decoding Z and interpreting the 
interaction weights, we obtain the following PPI network as 
shown in Fig. 3.

                 
Fig. 3 Example of a PPI network with 5 proteins

B. Predicting Protein-Protein Interaction Using 
Neighborhood Topology  

Interaction between a pair of proteins is possibly 
proportional to the size of their common neighborhood [13]. 
The size of the common neighborhood of protein pair pi and pj 
can be determined by identifying the number of proteins pl in 
the network, which are directly interacting with both pi and pj. 
The weight of interaction wi,j between proteins pi and pj is 
captured by the number of proteins in their common 
neighborhood. Protein pl is predicted to be interacting with pi 

1 2 3 4 5 6 7 8 9 10 11
0.34 0.68 0.29 0.43 0.73 0.62 0.78 0.38 0.19 0.24 0.58
w1, 2 w1, 3 w1, 4 w1, 5 w2, 3 w2, 4 w2, 5 w3, 4 w3, 5 w4, 5 Th 
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and pj if the corresponding weights of interaction wi,l and wj,l
are both greater than the threshold value Th. Apparently,

 
, ,| |i j i jw n N  (3)

where ni,j is the set of all proteins pl in the network with wi,l (or 
wl,i)>Th and wj,l (or wl,j)>Th. The accuracy in predicting the 
interacting protein pairs pi and pj in a PPI network can be 
judged by measuring the similarity between the predicted 
weight of interaction wi,j and their common neighborhood ratio 
|ni,j|/N. The above requirement can be accomplished by 
maximizing (4). 

2
, ,( , ) 1 [( | | ) ]n i j i j i js p p w n N  (4)

Here is a small positive constant. By maximizing (5) we 
may accurately predict the interaction weights between 
proteins in a network. 

1
1

1 1
( , )

N N
n i j

i j i
J s p p (5)

C. Predicting Protein-Protein Interaction Using Functional 
Characteristics

 Proteins that are located at the same cellular compartment 
and possess related molecular functions as well as are 
involved in similar biological processes, are considered as 
functionally similar. The similarity sim(f, f /) between any two 
functions f and f / can be evaluated by a similarity score 
between the respective GO terms annotating functions f and f /. 
Let O and O/ signify the GO term annotating protein functions
f and f / respectively. Hence, 

( , ) ( , )sim f f sim O O  (6)

There are evidences [14] where semantic similarity measure 
between two proteins is used to infer their possible interaction. 
The semantic similarity between two proteins is defined as the 
average similarity of all GO terms annotating the functions of 
two proteins. The similarity score between O and O/ has been 
adopted from [14] and is given as follows.

( , )
( , ) max 2 log (log log ) 1g O O g

g CA O O
sim O O p p p p (7)

where CA(O, O/) represents the set of all common ancestor 
GO terms of O and O/. Here pt represents the probability of 
occurrence of  GO term t in a specific corpus which is 
normally estimated by its frequency of annotation. Frequency 
of annotation is usually calculated from the number of child 
nodes a GO term has in the GO tree structure [26].

Maximization of the functional similarity between any two 
predicted interacting proteins pi and pj in the network, given as

1
2 , ,

1 1
max ( , ), 1 1 ( , ) ,

N N
i j f i j i j f i j

i j i
J w s p p w s p p (8)

will yield a better and more accurate prediction of interacting 
protein partners. Expression (8) provides a high value of J2 if 
both wi,j (the predicted interaction weight between two proteins 
pi and pj) and sf (pi, pj) (their functional similarity) are 
comparable to each other. If pi and pj are predicted to be 

interacting with a high value of wi,j and if they truly have a 
high functional similarity it will make wi,j × sf (pi, pj) high. 
Similarly, if the protein pair is predicted to be non- interacting 
with a low value of wi,j and if they really have low functional 
similarity, it will make [(1–wi,j)×(1– sf (pi, pj)] high. These in 
turn maximize J2. A wrong prediction of wi,j will reduce the 
value of J2. 

D. Predicting Protein-Protein Interactions Using Accessible 
Solvent Area  

The concept of ASA was introduced by Lee and Richards 
to quantitatively describe the extent to which atoms on the 
protein surface can form contacts with water [15]. ASA is 
identified by probing the van der Waals surface of a protein 
molecule with a probe atom. The probe atom is generally 
taken as the solvent molecule or water molecule. If the 
maximum van der Waals radius of any atom in the molecule is 
Rv and the radius of the probe atom is Rp, then for any given 
atom say X, only atoms with centers within 2(Rv+ Rp) of X 
can be involved in creating ASA. ASA is defined as the locus 
of the center of probe sphere when it rolls on the van der 
Waals surface of the molecule without penetrating any atom. 
Fig. 4 represents the pictorial view of three protein atoms 
being probed by a probe molecule. The locus of the center of 
the probe molecule, marked as blue dashed line, represents the 
accessible solvent area.  

 
Fig. 4. Pictorial representation of accessible surface area 

The reduction of unfavorable interactions in PPI occurring 
between water and non-polar atoms is termed as hydrophobic 
effect. The hydrophobic residues in proteins are incapable of 
forming hydrogen bonds in the aqueous solution. In general, 
the binding of two proteins is associated with an increase in 
entropy (T S H) of the protein-
protein complex relative to individual proteins. The combined 
effect of such c G can be 
represented as

STHG  (9) 
which is the displacement of water molecules from the 
hydrophobic surfaces of interacting proteins. These water 
molecules get released to the surrounding aqueous 
environment, where they form hydrogen bonds with other 
water molecules. 

The binding sites of two interacting proteins must be 
desolvated upon binding. When two proteins are bound to 
each other, the side chain or the main chain non-polar 
functional groups, present in their binding sites, become 
partially or completely restrained and construct intermolecular 
interaction. These non-polar molecules (functional groups) 
stay together to minimize water-exposed ASA. The 
hydrophobic effect is entropy driven process in PPI, which 

Probe molecule 

Protein molecule



G of the protein-protein complex by 
minimizing the surface interface between hydrophobic 
residues and water. Hence, in PPI, the extent of penetration of 
two proteins in their binding sites can be evaluated by 
assessing the ASA of the protein-protein complex. 

Considering the above requirements, the strength of 
interaction between proteins pi and pj based on their ASA 
reduction profile upon binding is given by 

_

( ) ( )
( , )

( )
i j

i jd
i j

ASA p ASA p
s p p

ASA p
(10)

where ASA(pi) and ASA(pi_j) respectively denote the ASAs of 
protein pi and the complex formed by interaction between 
proteins pi and pj. It is evident, more the extension in reduction 
of the ASA of the complex (ASA(pi_j)) with respect to their 
individual ASAs, more is the strength of the possible binding
between proteins pi and pj.

The maximization of the similarity between two predicted 
interacting proteins based on their reduced ASA after binding, 
given as

1
,3

1 1
( , )

N N
i j i jd

i j i
J w s p p

 
(11)

is expected to capture the predicted interacting protein pairs. 
As in case of J2, here also prediction of high (or low) 
interacting weights wi,j for proteins pi and pj with more (or 
less) reduction in the ASA of the complex after their binding 
with respect to their individual ASAs, ensures a high value of 
J3.

III. ALGORITHM 

The objective functions J1 to J3 in section II usually take 
multi-modal objective surfaces with local discontinuities at 
finite points in the search space of PPI network. Traditional
calculus based approach thus is inconvenient to optimize the 
above-mentioned individual objective functions. We think of 
using meta-heuristic algorithms to optimize individual 
objectives. Although there exist plenty of algorithms to 
address the optimization problem, very few of them can 
capture the global optima as the objective surfaces have
multiple rough local optima [16]. We here propose a solution 
by using a meta-heuristic algorithm to serve as the 
optimization task, while simultaneously learning the objective 
surfaces in the search space of PPI network. Hence, we plan to 
adapt the parameters of the meta-heuristic search algorithm 
according to the objective function estimates of a candidate 
solution (i.e., we learn the objective surface at the location of 
the trial solution). The knowledge of the parameter selection 
for each candidate solution in the optimization algorithm is 
obtained from the previously acquired knowledge about the 
parametric choice. The differential evolution for multi-
objective optimization (DEMO) [10] here has been used as the 
basic optimization algorithm and the stochastic learning 
automata (SLA) [11] as the parameter (scale factor of 
DEMO)-tuning algorithm. The synergistic effect of both 
improves the solutions for the given PPI prediction problem.  

A. Differential Evolution for Multi-objective Optimization  

An overview of the main steps of the traditional differential 
evolution for multi-objective optimization (DEMO) algorithm 
for simultaneous maximization of K objectives is presented 
next. 
(a) Initialization: DEMO commences from an initial 
population Pt of NP, D-dimensional target vectors (candidate 
solutions) ,1 ,2 ,( ) { ( ), ( ),..., ( )}i i i i DZ t z t z t z t  for i= [1, NP] at 
generation t=0, randomly initialized within the search bound 

min max[ , ]Z Z where min min min min
1 2= { , ,..., }DZ z z z and 

max max max max
1 2= { , ,..., }DZ z z z . The crossover rate CR is 

initialized in [0, 1]. The k-th objective function ( (0))k iJ Z is 

evaluated for the target vector (0)iZ for k= [1, K] and i=[1, 
NP]. 
(b) Mutation: A donor vector ( )iV t is created corresponding 

to each target vector ( )iZ t , for i=[1, NP], following DE/rand/1 
mutation scheme

1 2 3( ) ( ) ( ( ) ( ))i r r rV t Z t F Z t Z t     (12) 

where 1 2( ), ( )r rZ t Z t and 3 ( )rZ t  are randomly selected 
solutions from Pt such that i r1 r2 r3. F symbolizes the 
scaling factor in [0, 2]. 
(c) Crossover: The binomial crossover is concerned with 
generating a trial vector ( )iU t for each pair of a donor vector 

( )iV t and the respective target vector ( )iZ t by the following 
operation 

, ,
,

,

( ) if rand or
( )

( ) otherwise
i j i j rand

i j
i j

t  CR  j jv
tu t  z

    (13) 

for j=[1, D] where [1, ]randj D is a randomly chosen index. 

The k-th objective function ( ( ))k iJ U t is evaluated for the trial 

vector ( )iU t for k= [1, K] and i= [1, NP]. 
(d) Population Update:  To ensure faster convergence to the 
true Pareto front while simultaneous maximization of N 
objectives, the following non-dominated sorting based 
selection strategy is adopted in DEMO. The trial vector ( )iU t  

replaces the corresponding target vector ( )iZ t if ( )iU t  

dominates ( )iZ t . However, when ( )iU t and ( )iZ t are non-

dominated, ( )iU t is included in the current population Pt. 

Otherwise, ( )iU t is discarded. Repeating this process for i=[1, 
NP] yields a population of solution vectors with size |Pt| [ 
NP, 2NP]. 
(e) Update of Next Generation Population using Non-
dominated Sorting and Crowding Distance Metric:  The 
resulting population Pt is then sorted into a number of Pareto 
fronts pf1, pf2, pf3, and so on, according to non-domination 
[17]. The population Pt+1 for the next generation is formed by 
identifying the non-dominated sets of solutions from Pt (of 
size in [NP, 2NP]) according to the ascending order of their 



Pareto ranking starting from pf1. The members of the front pfl,
which can be partially passed on to Pt+1, are sorted in 
descending order of crowding distance [17]. To ensure 
diversity in population, the solutions with the highest 
crowding distances are included in Pt+1 until its size becomes
NP. 
(f) Convergence: After each evolution step, we repeat from 
step (b) until the terminating condition for convergence is 
satisfied.

B. Stochastic Learning Algorithm

Stochastic learning automata (SLA) fall under the class of 
reinforcement learning [11]. In reinforcement learning, the 
agent performs an action causing a state transition in the 
environment and receives a reward (or penalty) for the action 
in an attempt to reach a definite goal. The task of the agent 
here is to learn a control policy to select an action (from a set 
of possible actions) at a given state s to improve the 
probability of correct response because of interaction with its 
environment.
Let, 

S= {s1, s2, …,sm} be a set of m states of an agent in a given 
environment, 

A= {a1, a2, …,an} be a set of n actions that the agent can 
select in each state si S,

pi,j be the action probability governing the choice of the 
action for transition to a new state sk by executing action 
aj at state si,

xi,j be the response the agent acquires (from the 
environment) by the execution of an action aj at state si. 
According to P-model [11] of environment, xi,j=0 
represents non-penalty response or reward, while xi,j=1 
signifies the penalty response. 

SLA initiates with equal probabilities for each action and 
hence considers no prior assumption about the optimal action. 
SLA begins with a randomly selected initial state si S. One 
action aj A is selected at random, the response of the 
environment xi,j is observed, based on which the action 
probabilities pi,l, for l= [1, n], at state si are changed. The agent 
moves to a new state sk due to execution of action aj. Now the 
next state sk is considered as the initial state and a new action 
is selected according to the updated action probabilities and 
the procedure is repeated.

It is now evident that the most crucial factor that influences 
the achievement of the desired performance of SLA is the 
reinforcement-learning scheme for updating of action 
probabilities. The linear reinforcement-learning scheme LR-P
for updating action probabilities is described below.

For a non-penalty/reward response xi,j=0 obtained at 
state si by executing action aj 

, , ,

, , ,

(1 )

,      for [1, ],
i j i j i j

i l i l i l

p p p

p p  p   l n l j
(14)

Contrarily, if a penalty response xi,j=0 is obtained at 
state si by executing action aj 

, , ,

, , ,

(1 ) ( 1) ( 1)

1,      for [1, ],

i j i j i j

i l i l i l

p p p n n
n

p p  p   l n l j
n

(15)

The parameter [0, 1] is associated with reward response 
while the parameter [0,1] is associated with the penalty 
response. Here LR-P model is employed with = . 

C. Stochastic Learning Algorithm Induced DEMO 

(a) Initialization: DEMO-SLA starts with a population of NP, 
D-dimensional target vectors representing the candidate 
solutions within the prescribed bound min max[ , ]Z Z at t=0. The 

objective function values ( (0))k iJ Z are evaluated for k=[1, K] 
and i=[1, NP]. The entries (action probabilities) for the state 
transition table are initialized with equal and small values, for 
example 0.1. This is in accordance with the principle of 
unavailability of a priori information about the behavior of the 
environment and assuming all selection of actions (scale 
factor) to be equally likely at a particular stage.
(b) Ranking of Members and State Assignment: The target 
vectors (0)iZ , for i=[1, NP], are then assigned states in the 
state transition matrix following two steps. First, the 
population members are grouped under subsequent Pareto 
fronts using the non-dominating criteria. Then the non-
dominated target vectors in individual Pareto fronts are again 
sorted in the descending order of the crowding distance. Let 

(0)iZ be placed in the Pareto front pfp with a rank of q based 
on the crowding disance measurements of the residents in pfp. 
Then the state of (0)iZ in the state transition matrix is 
identified by evaluating its rank ri(0) [1, NP], given as

1

1
(0)

p
i u

u
r pf q  (16) 

Here |pfu| represents the number of target vectors in the u-th 
Pareto front. Apparently, the first term of (16) represents the 
total number of solutions (appearing in the Pareto fronts 
former to pfp) dominating (0)Z . The ranking strategy in (16) 
ensures that the target vectors in the first (optimal) Pareto front 
pf1 are allocated states only based on their respective crowding 
distance based ranks. Hence the solution with rank ri(0) is 
assigned to the state ri(0) [s1(t), sNP(t)]. This is repeated for 
i=[1, NP].
(c) Adaptive Selection of Scale Factor of DEMO: The 
reward/penalty based adaptation of the action probabilities 
helps in the right selection of scale factor F for the target 
vectors of the population. For example, a target vector at state 
si(t) has a high probability of selecting F=Fj if pi,j(t) is the 
largest among pi,l(t) for l=[1, n]. It is apparent that if 
pi,j(t)>pi,l(t), for all l, then selection of F=Fj at state si(t) by the 
population members was rewarded many times before in the 
evolution process. Naturally, the learning experience will 
guide the target vector at state si(t) to select F=Fj with a high 
probability. Hence the probability of selecting the scale factor 
F=Fj by a target vector at state si(t) is governed by pi,j(t).



To maintain population diversity (by overcoming the 
premature convergence), in addition to the action probabilities, 
Roulette-wheel selection strategy is employed for selection of 
potentially useful scale factors. The Roulette-wheel selection 
of scale factor F=Fj for a target vector st state si(t) being 
governed by the action probabilities pi.l(t), for l=[1, n], is 
realized by the following strategy. First, a random number 
rand is generated between (0, 1). Then we determine Fj, such 
that the cumulative probability of F=F1 through F=Fj 1 is less 
than rand, and the cumulative probability for F=F1 through 
F=Fj is greater than rand. Symbolically, we need to hold 

1
, ,

1 1
( ) ( )

j j
i l i l

l l
p t rand p t  (17)

The adaptive selection strategy of scale factors F=Fj, for 
Fj [F1, Fn], is done for all the target vectors ( )iZ t for i=[1, 
NP].
(d) DEMO Algorithm: Once a scale factor Fj [F1, Fn] is 
selected for individual population members (using the action 
probability driven Roulette-wheel criterion), each target vector 

( )iZ t participates in mutation and crossover machanisms of 
the traditional DEMO (as in sections III.A(b) and (c)) to 
generate a trial vector ( )iU t for i=[1, NP]. The objective 

function values ( ( ))k iJ U t are evaluated for k=[1, K] and i=[1, 
NP].
(e) Population Update and Reward/Penalty based Update 
of State Transition Table: Let the state of the target vector 

( )iZ t before generation of ( )iU t is given by ri(t). If 

( )iU t dominates ( )iZ t (indicating quality improvement of 

( )iZ t on selection of Fj [F1, Fn]), ( )iU t replaces ( )iZ t in the 
current population Pt and the corresponding action 
probabilities will be updated at state ri(t) following (14). 
Again, if ( )iU t and ( )iZ t are non-dominated, ( )iU t is 

incorporated in Pt. Otherwise, ( )iU t is abandoned from Pt. 
However, it is worth mentioning that in both the cases, there is 
no quality improvement of ( )iU t over ( )iZ t and hence the 
action probabilities at state ri(0) will be evaluated by (15) with 
non-zero penalty xi,j(t) = 1. Repeating the step for i=[1, NP] 
ultimately yiels a population Pt of size |Pt| [NP, 2NP].
(f) Non-dominated Sorting based Ranking of Members:  
The members of Pt are then grouped under subsequent Pareto 
fronts using the non-dominating criteria. Then the non-
dominated members of individual Pareto fronts are next sorted 
in the descending order of the crowding distance. Once the 
Pareto rank and the crowding distance based rank of a member 
have been identified, its composite rank r [1, |Pt|] is 
determined using (16), where the size of the updated 
population |Pt| [NP, 2NP]. The entire population Pt is then 
sorted in ascending order of the composite rank of individual 
members.
(g) State Assignment of Population Members of Next 
Generation:  The next generation population Pt+1 is formed by 
selecting the first NP target vectors of the sorted population Pt. 

A target vector ( 1)iZ t of Pt+1, acquiring a rank of ri(t+1) 
(using (16)) is allocated to a state ri(t+1) [s1(t+1), sNP(t+1)]. 
This is repeated for i=[1, NP]. 
(h) Convergence: After each evolution, steps (c) to (g) are 
repeated until one of the following conditions for convergence 
is satisfied. The conditions include restricting the number of 
iterations, maintaining function evaluations, or both, 
whichever occurs earlier.

 
Procedure DEMO-SLA-Induced-PPI-Prediction
Input:  Set of functions and annotating GO terms of N proteins under 

consideration and their individual ASAs.
Output: Predicted interaction between N proteins.
Begin
I. Initialization:  

(i) Set the generation number t 0 and randomly initialize 
D=N×(N 1)/2+1-dimensional NP target vectors ( )iZ t of 
population Pt for i=[1, NP] with zj(t) within [0, 1]. 

(ii) Evaluate the objective function values Jk( ( )iZ t ) for k=[1, 3] 
and i= [1, NP] using (5), (8), and (11) respectively.

(iii)Set 1 and = =0.5. Initialize the action probabilities 
[pi,j(t)]= 0.1 of the state transition table where i= [1, NP] 
represents the rank of a target vector at state ri(t) and j=[1, n] 
denotes the index of n uniformly quantized scale factors F. 

II. Ranking and State Assignment of Population Members:
(i) Group the target solutions of population P0 into Pareto fronts 

based on non-dominating criterion. 
(ii) Sort the members of individual Pareto fronts in descending 

order of crowding distance.  
(iii) Determine the rank ri(0) [1, NP] using (16) and assign it to a 

state ri(0) [s1(0), sNP(0)] for i=[1, NP]. 
III. While stopping criterion is not reached, do begin

For i=1 to NP do begin 
Let assign s ri(t).  
(i) Roulette-Wheel Adaptive Selection of Scale Factor:

(a) Generate a random number rand in [0, 1].
(b) Select the scale factor Fj [F1, Fn] if 

1
, ,

1 1
( ) ( )

j j
s l s l

l l
p t rand p t .

(ii) Mutation: Generate ( )iV t for each ( )iZ t using the selected 
scale factor Fj [F1, Fn] following the dynamic of (12).

(iii)  Crossover: Generate ( )i tU for each pair of ( )iZ t and 

( )iV t using (13). Evaluate Jk( ( )i tU ) for k=[1, 3] using (5), 
(8), and (11) respectively. 

(iv) Update Population and Action Probabilities: 
 If ( )i tU dominates ( )iZ t then do 

(a) Assign zero penalty response xi,j(t) and update the 
action probabilities at state s [s1(t), sNP(t)] by setting

, , ,

, , ,

( 1) ( ) (1 ( ))

( 1) ( ) ( ),       for [1, ],   

s j s j s j

s l s l s j

t t tp p p

t t  t   l n l jp p p
 

(b) Replace ( )iZ t by ( )i tU .
 Else do 

(a) Assign non-zero penalty response xi,j(t)  and update 
the action probabilities at state s [s1(t), sNP(t)] by



, , ,

, , ,

( 1) ( ) (1 ( )) ( 1) ( 1)

( 1) ( ) ( ) 1,       for [1, ],   

s j s j s j

s l s l s l

p t t t n np p
n

t t  t   l n l jp p p
n

(b) If ( )i tU and ( )iZ t are non-dominated 

then include ( )i tU in Pt.

       Else discard ( )i tU . 
        End If.
End If.

End For
(v) Non-dominated Sorting based Ranking of Population 

Members:  
(a) Group the members of population Pt of size |Pt| [NP, 

2NP] into Pareto fronts based on non-dominating 
criterion.

(b) Sort the members of individual Pareto fronts in 
descending order of crowding distance. 

(c) Determine the composite rank of each population 
member using (16).

(d) Sort the population Pt in ascending order of the 
composite ranks. 

 (vi) State Assignment of Members of Next Generation 
Population: 
(a) Pass the first (top) NP members of sorted population Pt

to Pt+1 and discard the rest of the members of Pt (having 
composite ranks greater than NP).

(b) Assign a target solution ( 1)iZ t Pt+1, acquiring a 
composite rank ri(t+1) [1, NP]  to a state ri(t+1) 

[s1(t+1), sNP(t+1)]  for i=[1, NP]. 
(vii) Increase the generation value t t+1. 

End While.
IV. Decode the best target solution bestZ using Fig. 2 and 3

residing at state s1(t) and return the predicted PPI network.

IV. EXPERIMENTS AND RESULTS 

A. Performance Metrics 
 Four different classes of interaction can be observed when 

the PPI network obtained by proposed method is compared 
with the standard PPI network. The classes are namely true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN).The relative performance of our proposed PPI 
prediction algorithm is compared with the competitors based 
on the well-known metrics enlisted in Table-I.  

B. Comparative Framework and Database Used 
The proposed method is compared with two groups of 

algorithms. The first group comprises evolutionary/swarm
multi-objective meta-heuristic search algorithms including 
differential evolution for multi-objective optimization 
(DEMO) [10], firefly algorithm with non-dominated sorting 
(FANS) [12] and non-dominated sorting genetic algorithm-II 
(NSGA-II) [17]. All of them attempt to maximize the 
objective functions as proposed here to solve PPI prediction 
problem. The second category of competitor algorithms 
encompasses the existing non meta-heuristic computational 
models for PPI prediction including fuzzy support vector 
machine (FuzzSVM) classifier (using GO terms, domains and 

amino-acid sequence information) [18], relative specific 
similarity (RSS) method (using GO terms)[19], random 
decision forest (RDF) [20]. The best parameter setting is used 
for all the algorithms as mentioned in the respective source 
papers. 

TABLE I: PERFORMANCE METRICS FOR PPI PREDICTION

Performance Expressions

sensitivity (recall) 
T P

T P F N
 

specificity
T N

F P T N
 

positive 
likelihood ratio (1 )Sensitivity Specificity

negative 
likelihood ratio (1 )Sensitivity Specificity

precision/positive 
predicted value 

TP
TP FP

 

negative 
predicted value 

T N
T N F N

accuracy
TP TN

TP TN FP FN

F1_score
2

2
TP

TP FP FN
Mathews 

correlation 
( ) ( )

( )( )( )( )
T P T N F P F N

T P F P T P F N T N F P T N F N
receiver 

operating curve Plot of sensitivity against (1 specificity)
area under curve 

(AUC) Area under ROC Curve

To analyze the efficiency of our proposed algorithm to 
predict PPI and to validate the predictions, the predicted 
protein interactions are compared with the protein interaction 
data of BioGrid (July 2013) [21]. The BioGrid database 
consists of 6391 proteins and 326967 interactions. The 
standard non-interacting (or negative) datasets play an 
important role to validate our proposed method. In this paper 
we have generated the non-interacting protein pair by randomly 
pairing the proteins and removing those pairs which are already 
identified as positive pair. The Cartesian coordinates of the 
proteins in Saccharomyces cerevisiae (SC) are acquired from 
Protein Data Bank [22]. The GO terms of each protein for 
evaluating functional similarity is obtained from 
Saccharomyces Genome Database [23]. ASA is calculated 
using GETAREA [24].

C. Results and Performance Analysis    
The experiment undertaken involves comparison of our 

proposed PPI prediction algorithms with the existing state-of-
art techniques. In this paper PPI is represented as MOO 
problem. Since all the vectors in the approximate Pareto front A 
(Front_Set(1) of DEMO-SLA), found by an evolutionary 
multi-objective optimization algorithm, will be equally good, 
so to select the best one among many possible candidates, the 
following composite measure is considered for each 
vector iZ A .  

* * *
1 2 3( ) ( ) ( ) ( )    for [1,| |]i i i iJ Z J Z J Z J Z i A (18) 

where |A| is the number of non-dominated solutions in A and 
the normalized estimate of ( ) (0,1)k iJ Z for k=[1, 3] is given 
by



| |*

1
( ) ( ) ( )

A
k i k i l k

l
J Z J Z J Z (19)

The effective non-dominated solution vector Z A having the 
smallest iJ Z for i= [1, |A|] is considered for decoding the

optimal PPI network. 
The receiver operating curves (ROCs) for different PPI 

prediction algorithms for interactions obtained from BioGrid 
database is plotted in Fig. 5(a). ROCs are a useful technique for 
examining the efficacy of a prediction algorithm in inferring 
true ‘interacting’ and ‘non-interacting’ pairs of proteins. The 
curve plots sensitivity against (1 specificity). The relative 
positions of the ROC curves indicate the relative efficiency of 
the algorithms to predict truly interacting protein-pairs. A plot, 
corresponding to algorithm X, lying above and to the left to the 
plot for another algorithm Y, indicates greater efficiency of X
over Y for PPI prediction. Based on the above-mentioned fact, 
it is evident from Fig. 5(a) that FANS exhibits highest 
efficiency. A quantitative measure of the ROC induced 
efficiency of a PPI prediction algorithm can be captured by its 
respective area under curve (AUC), as reported in Table-II. It 
is apparent from Fig. 5(a) and Table-II that AUCs for DEMO-
SLA, DEMO, FANS and NSGA-II employing 
evolutionary/swarm optimization methods have attained 
higher values than other competitor classification method. 

TABLE II: AREA UNDER CURVE OBTAINED FROM FIG. 5(A)

DEMO-
SLA DEMO FANS NSGA-II FUZZ 

SVM RSS RDF 

0.948
(0.09)

0.917 
(0.17)

0.903
(0.19)

0.889
(0.19)

0.879 
(0.29) 

0.796
(0.38)

0.604
(0.96) 

A plot of precision versus recall (PROC curve) is given in 
Fig. 5(b).we aim to obtain a reasonable value of sensitivity
(recall) while putting more emphasis on precision since low 
reliability is one of the main weaknesses of the experimental 
methods. To assess the relative merits of the algorithms, a 
straight line is drawn making an angle of 450 with the recall 
axis such that it passes through all the curves corresponding to 
all contender algorithms. In our analysis, we have taken the 
distance from the origin to the intersecting point between the 
straight line and each PROC curve as a measure of the 
performance of respective algorithm. The higher the measure, 
the better is the performance. Symbol “
the relative performance of any two algorithms. Using this 
convention, the ranking of the algorithms can be depicted as: 
DEMO-SLA DEMO FANS NSGA-II FuzzSVM 
RSS RDF. The plot of Fig. 5(b) indicates that the proposed 
PPI prediction algorithm in general offers good level of 
precision and recall.

Table-III is used to report the mean and standard deviation of 
best-of-run values of the performance metrics, for 25 
independent runs of each PPI prediction algorithm. The 
standard deviation is given in parenthesis below its respective
mean value. The statistical significance level of the difference 
of the 25 sample values of each metric of DEMO-SLA and any 
one of the remaining six competitive algorithms (DEMO, 
FANS, NSGA-II, FuzzSVM, RSS and RDF) is judged by 

Wilcoxon rank sum test [25] with a significance level =0.05. 
The p-values obtained through the rank sum test between the 
best algorithm (DEMO-SLA as evident from Table-II) and 
each of the six remaining algorithms over the nine performance 
metrics are reported in third brackets in Table-III. Here NA 
signifies not applicable cases of comparing the best algorithm 
(DEMO-SLA) with itself. The null hypothesis concerned with 
the statistically equivalent performance of the i-th and the 
proposed DEMO-SLA based PPI prediction algorithms is 
rejected, if the p-value associated with their comparative 
performance analysis is less than .  

An analysis of Table-III indicates that the proposed DEMO-
SLA has performed better than other algorithms. It is 
interesting to see that DEMO-SLA outperforms all its 
contenders (both meta-heuristic and non meta-heuristic PPI 
predictors) in a statistically significant fashion with respect to 
all the performance metrics except for DEMO. Here, DEMO 
based prediction method remains the second best algorithm, 
being surpassed by DEMO-SLA, however, insignificantly. One 
of the reasons of the superiority of our proposed meta-heuristic 
search algorithm over the traditional classification techniques 
(e.g., FuzzSVM, RSS, and RDF) used to predict PPI network, 
is its ability to handle the unbalanced dataset.  

In order to justify the philosophy of maximizing individual 
objectives for predicting PPI, we have used a sub-network of 
the PPI dataset of SC, as given in Fig. 6, comprising 40 
proteins (including CTR9, LEO1, RTF1, SPT16, PAF1, POB3, 
CKA2, CKA1, RPO21, CKB1, CKB2, HTZ1, SET2, CTK1, 
GAL11, SSF1, ELF1, DOA1, SRB5, CCR4, SUA7, SPT5, 
TFG2, SPT2, VPS71, SPT15, SWR1, HPR1, UBP6, SSN3, 
MFT1, SWI4, THP2, LGE1, DST1, RTR1, VPS72, SAP30, 
PHO23 and SIN3). The sub-network involves 283 positive and 
497 negative interactions. The predicted PPIs for the same set 
of proteins, obtained using seven competitor algorithms, are 
pictorially represented in Fig. 7. Comparing Fig. 6 with Fig. 7, 
it is apparent that DEMO-SLA based method outperforms 
other competitors in predicting correct PPIs. The sub-network 
predicted by various competitor algorithms is quantitatively 
analyzed with respect to nine performance metrics as provided 
in Table- IV. It is apparent from Table-IV that DEMO-SLA 
based PPI predictor has consistently performed better with 
near optimal values of nine performance metrics. The values 
in the table in turn attest the closeness between the original 
and DEMO-SLA based PPI sub-networks. 

V. CONCLUSION 
In this paper, a novel method is proposed using SLA 

induced DEMO (called DEMO-SLA), to predict PPI network. 
The solution to the possible PPI network here is represented 
by a solution vector comprising the weights (in [0, 1]) of 
protein interactions and the threshold based on which the 
connection is established between the proteins. Here the effect 
of three essential characteristic features to predict PPI is 
analyzed. The features include i) commonality in neighboring 
proteins of interacting protein pairs, ii) their functional 
similarity and iii) their accessible solvent area upon binding. 
Experiments undertaken reveal the superiority of the proposed 
method and the results clearly show that the proposed method 
is effective in predicting PPIs. 



           
 

Fig. 5. (a) ROC and (b) PROC plots for different PPI prediction algorithms for BioGrid with symbols:     for DEMO-SLA,     for DEMO, for FANS, for 
NSGA-II, for FuzzSVM, for RSS and  for RDF

TABLE III: COMPARISON OF DIFFERENT PPI PREDICTION ALGORITHMS FOR 25 RUNS (BEST METRIC VALUES MARKED IN BOLD) 
Algorithms Sensitivity Specificity PLR NLR Precision NPV Accuracy F1_score MCC 

DEMO- SLA
0.9399 0.9488 18.4552 0.0869 0.9687 0.8901 0.9123 0.9456 0.8892 
(0.167) (0.233) (0.139) (0.142) (0.016) (0.117) (0.159) (0.068) (0.018)
[NA] [NA] [NA] [NA] [NA] [NA] [NA] [NA] [NA]

DEMO
0.9023 0.9301 16.7843 0.1221 0.9132 0.8765 0.8912 0.9032 0.8411 
(0.178) (0.251) (0.152) (0.162) (0.014) (0.212) (0.163) (0.070) (0.033)

[0.0742] [.0566] [0.0798] [0.1895] [0.0643] [0.0652] [0.1486] [0.1939] [0.0789] 

FANS
0.8843 0.9145 8.4563 0.1670 0.8934 0.8025 0.8511 0.8726 0.6985 
(0.183) (0.318) (0.173) (0.231) (0.017) (0.227) (0.175) (0.074) (0.047)

[0.0409] [0.0408] [0.0572] [0.0812] [0.0357] [0.0451] [0.0645] [0.0724] [0.0429] 

NSGA-II 
0.8612 0.8937 7.5819 0.2045 0.8517 0.7388 0.8226 0.8466 0.6450 
(0.200) (0.320) (0.180) (0.270) (0.020) (0.260) (0.187) (0.080) (0.050)

[0.0402] [0.0326] [0.0361] [0.0250] [0.0340] [0.0259] [0.0339] [0.0308] [0.0400] 

FuzzSVM 
0.8437 0.7816 3.6563 0.3129 0.7822 0.6619 0.7154 0.7496 0.5925 
(0.420) (0.560) (0.530) (0.510) (0.390) (0.650) (0.560) (0.440) (0.670)

[0.0356] [0.0288] [0.0247] [0.0119] [0.0339] [0.0197] [0.0304] [0.0260] [0.0360] 

RSS 
0.7582 0.6534 2.0147 0.4664 0.7123 0.6693 0.7110 0.7172 0.5456 
(0.600) (0.650) (0.560) (0.670) (0.500) (0.680) (0.610) (0.520) (0.790)

[0.0260] [0.0250] [0.0244] [0.0074] [0.0329] [0.0167] [0.0244] [0.0167] [0.0349] 

RDF 
0.6718 0.5845 1.6732 0.6616 0.5997 0.5876 0.6321 0.6121 0.5123 
(0.820) (0.790) (0.630) (0.750) (0.610) (0.830) (0.710) (0.890) (0.830)

[0.0053] [0.0015] [0.0091] [0.0029] [0.0130] [0.0014] [0.0035] [0.0068] [0.0018] 

TABLE IV: VALUES OF PERFORMANCE METRICS OBTAINED FROM THE PPI SUB-NETWORK (FIG. 6AND 7) (BEST METRIC VALUES MARKED IN BOLD)

Algorithms Sensitivity Specificity PLR NLR Precision NPV Accuracy F1_score MCC
DEMO- SLA 0.9175 0.9015 12.463 0.1256 0.8856 0.9278 0.9065 0.8712 0.8198

DEMO 0.8654 0.8389 7.8335 0.1273 0.7478 0.9121 0.8322 0.8231 0.6729
FANS 0.7812 0.8128 5.1136 0.2497 0.6345 0.8641 0.7767 0.7564 0.5744

NSGA-II 0.6389 0.7305 3.4728 0.5351 0.5545 0.7547 0.6658 0.5634 0.3457
FuzzSVM 0.5595 0.5670 2.1755 0.8163 0.4129 0.6532 0.5343 0.4469 0.2533

RSS 0.5106 0.4828 1.0686 1.1349 0.3546 0.6376 0.4255 0.4186 0.1558
RDF 0.4940 0.5090 0.9860 1.0134 0.3595 0.6321 0.5110 0.4112 0.0565

Fig. 6. Original sub-network of PPI network in yeast
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Fig. 7. Sub-network obtained by PPI prediction algorithms: (a) DEMO-SLA (b) DEMO (c) FANS (d) NSGA-II (e) Fuzz-SVM (f) RSS, and (g) RDF
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