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Abstract—Real-world multi-robot co-ordination problems, 
involving system (robot) design, control, and planning are often 
formulated in the settings of an optimization problem with a view 
to maximize system throughput/efficiency under the constraints 
on system resources. The paper aims at solving a multi-robot 
box-pushing problem in the presence of noisy sensory data using 
evolutionary algorithm. The process of co-ordination among 
multiple robots is characterized by a set of measurements and a 
set of estimators with a mathematical relationship between them
(captured by the objective function). In the box-pushing problem 
by twin robots, the range data obtained by the robots at any 
instant of time are measurements, and the torque and/or force to 
be developed by the robots for a local movement of the box are 
estimators. We here use torques and forces developed by the 
robots to construct two objectives on minimization of energy 
consumed and time required for a local movement of the box in 
the presence of noisy sensory data. The box-pushing problem is 
solved using the proposed extended noisy non-dominated sorting 
bee colony (ENNSBC) algorithm to handle noise in the objective 
surfaces. Experiments undertaken in both simulation and real-
world platforms reveal the superiority of the proposed ENNSBC 
to other competitor algorithms to solve the box-pushing problem 
with respect to the performance metrics defined in the literature. 

Keywords—multi-robot box-pushing; energy consumption; time 
requirement; measurement noise; multi-objective optimization.

I. INTRODUCTION  
Since late 1980s, multi-agent co-ordination systems have 

emerged as a significant part of research in the realm of 
robotics. One of the vital challenges for multi-robot co-
ordination systems is to design appropriate co-ordination 
strategies between the robots that enforce them to execute their 
task competently and time optimally in a complex workspace.
Several works on multi-robot co-ordination have been reported 
in the literature [1 5]. Co-ordination typically has two 
alternative forms, co-operation and competition. When the
success in one’s goal causes a possible failure in the remaining 
agents’ goal, we call it competition. In a co-operative scenario, 
agents usually have non-conflicting goals. 

Box-pushing by twin robots is one of the most popular 
examples of multi-robot co-operation. The box-pushing 
problem aims at determining a continuous collision-free path 
for transportation of a box from a given starting position to a 
fixed goal position in an arbitrary rigid polyhedral 
environment by twin robots [1 2]. The transportation of the 
box can be determined globally or locally. The local planning 
is more flexible to its global counterpart because of its 
capability to take care of dynamic obstacles. Moreover, small 

time is required in local planning to identify the next position 
of the box only, rather than deriving the entire trajectory of 
motion for the box. Consequently, in this paper, the local 
planning is addressed to solve the box-pushing problem.

In the present context, we consider twin robots, capable to 
apply controlled torques and forces to jointly steer and translate
a box respectively by a desired angle and distance. The box-
pushing problem undertaken here aims at minimizing the total 
energy consumed and the total time required by the robots for 
the execution of the complete task. These two objectives are 
apparently conflicting. For instance, to reduce the total energy 
consumed for the transportation job, the twin robots have to 
apply less torques and forces, which in turn increases the time 
requirement. One modern approach to handle the conflicting 
objectives is to employ multi-objective optimization (MOO) 
techniques. The MOO technique to be used here will serve as 
a local path planner to determine the necessary torques/forces 
required along with the rotational/translational parameters of 
the box to move it locally with an objective of minimizing the 
energy consumed and time spent. Additionally, the merit of 
the paper lies in formulating the objective functions i) to 
confirm that the energy- and time-optimal local planning 
aligns the box towards its pre-defined goal position and ii) to 
ensure smoothness of the planned trajectory.

Traditional approaches of calculus-based MOO, usually, 
cannot be used to handle such optimization problem, primarily 
for two reasons. First, the objective functions occasionally are 
found to have multiple discontinuities distributed across the 
span of the variables. Second, the objective functions might 
change during real-time because of the dynamic nature of the 
measurement inputs. This calls for a derivative-free 
optimization technique. Multi-objective evolutionary 
algorithms (MOEAs) [6] suggest alternative approaches to 
handle such real-world MOO problems. The paper aims at 
formulating the multi-robot box-pushing problem in the 
settings of an MOEA, where the objectives of the MOEA 
include the fundamental goals of the co-operative robots (i.e., 
energy and time minimization to execute the complete task). 

Significant research in robot co-ordination has been 
attempted by previous researchers in multi-agent robotics. 
However, unfortunately there are fewer or almost no traces of 
handling co-ordination problem in the presence of 
measurement noise in the sensory data. In the box-pushing 
problem, the range measurements taken by the sensors of the 
robots are often found contaminated with noise because of 
environmental constraints (causing path deviation due to 
multiple reflection of sonar/laser range signals/ or noisy sensor 



characteristics). Trajectory planning of mobile robots 
evidently seems to be very difficult in the presence of noisy 
measurements.

In the present context, the energy- and time-objectives of 
MOEA being the functions of the sensory measurements of 
the robots of the box-pushing problem, an infiltration of noise 
in the measurement variables induces inaccuracies in the 
objective functions. Traditional MOEAs totally fail under such
circumstances. The adverse effect of creeping of noise in the 
objective surfaces becomes prominent in the selection phase of 
an MOEA [6 10], [14]. The infiltration of noise in the 
objective function (often called fitness) estimates of a poor 
trial solution may deceive the selection operator and it may 
remain successful to get an accommodation in the population 
of the future evolutionary generation. Contrarily, a superior 
trial solution with its seemingly poor fitness estimates may be 
declined by the selection operator from being promoted to the 
next generation population. In this paper, we extend MOEAs 
under the settings of noisy objectives, and apply it in multi-
robot box-pushing problem. 

The optimization policy addressing the noise-induced 
uncertainty in the fitness assessments of a trial solution in an 
MOEA is referred to as noisy MOEA (NMOEA). The present 
problem of the multi-robot box-pushing in the presence of 
noise thus boils down to an intelligent MOEA problem, where 
interesting strategies need to be incorporated in a traditional 
MOEA to search optimal trial solutions in the presence of 
noise in the objective surfaces. In this paper, we have solved 
the multi-robot box-pushing problem using an extension of our 
previously proposed noisy non-dominated sorting bee colony 
(NNSBC) algorithm [9]. NNSBC is selected as the basic 
framework for NMOEA here to handle noise in the objective 
surfaces and for its simplicity in coding, fewer control 
parameters, good accuracy, and fast speed of convergence.  

In NNSBC, the uncertainty in filtering quality trial 
solutions over evolutionary generations is handled by 
addressing three policies. First, the sample-size for periodic 
fitness (objective function) evaluation of each trial solution (to 
reduce the jeopardizing effect of noise to promote inferior 
solutions) is adapted with the fitness variance in its local 
neighborhood to proficiently balance the accuracy in fitness 
estimation and run-time. Second, the effective fitness of a trial 
solution is estimated from the expectation of its fitness 
samples, instead of conventional averaging. The third policy
aims at including a slightly poor solution in the approximate 
Pareto front satisfying a statistical test. 

In this paper, an extended version of NNSBC is proposed 
(referred to as extended NNSBC ENNSBC henceforth). It 
differs from NNSBC in two aspects. First, the evaluation of 
the expected fitness of a trial solution of NNSBC is replaced 
by an alternative novel approach of the fitness expectation 
based on the distribution of its fitness samples in the entire 
fitness sample space. Here, a density-based nonuniform 
partitioning of the fitness sample space is employed to capture 
the uncertainty involved in the fitness measurement of the 
noisy fitness samples. Second, ENNSBC extends the 
deterministic Pareto dominance conditions of NNSBC by 
incorporating probabilistic estimate of dominance of a trial 
solution over other with an aim to identify true quality 
solutions.

Experiments are undertaken to study the relative 
performance of the proposed ENNSBC algorithm with respect 
to NNSBC [9] and other existing NMOEAs [6], [11], when 
energy- and time-objectives of the box-pushing problem are 
induced with measurement noise. Experimental results reveal 
that the proposed extension is capable of capturing better 
energy- and time-optimal paths for the transportation problem 
than those generated by the other competitive NMOEAs.

The paper is divided into seven sections. Section II 
provides a formulation of the multi-robot box-pushing 
problem. The issue of objective function selection is taken up 
in section III. Section IV introduces the NNSBC algorithm. In 
section V, we briefly outline the noise handling mechanisms in 
our proposed ENNSBC algorithm. Section VI reports the 
results of performance analysis of ENNSBC to solve the box-
pushing problem. Conclusions are given in section VII.

II. MATHEMATICAL FORMULATION OF THE BOX-PUSHING 
PROBLEM 

In this section, the three steps involved in a single step of 
local movement of the box (Fig. 1) from the starting position 
to the next position are described. First, the robots turn the 
box, and then they translate it parallel to its length and lastly 
move it perpendicularly to its length. The box to be translated 
is considered to have a mass of M units. Its moment of 
inertia I about its centroidal z–axis perpendicular to the plane 
of the box is given by 

2 2 12I M l b                                     (1) 

where l is the length and b is the breadth of the box. 
A. Rotation About the Axis Passing Through the Center of 

the Box
Let C(xc, yc) be the center of mass of the box and E(xe, ye), 

F(xf, yf), G(xg, yg) and H(xh, yh)  be the four corners of the box 
respectively at some time t as shown in Fig. 1 (step 1). The 
expressions for the new position after rotation are given as 

1 cos cos sin
1 cos cos sin

i c i i c
i c i i c

x x x y y
y y y x x  (2) 

for all i {e, f, g, h}. Given the torque , the energy E1 
required to rotate the box around an axis perpendicular to the 
X Y plane, by angle   is 

1E (3) 
and the time 1 required is obtained as 

 1
2 I                               (4) 

B. Translation Perpendicular to Width
In order to translate the box perpendicular to its width one 

robot pushes the box and the other pulls it. These forces move 
it by a distance rw parallel to its length. As shown in the Fig. 1 
(step 2), let the new co-ordinates of the corners the box after 
translation be E''(xe

'', ye
''), F''(xf

'', yf
''), G''(xg

'', yg
''), H''(xh

'', yh
'') 

and the center be C''(xc
'', yc

''). The expression for the new co-
ordinate of the vertices is given by the following equations. 

cos
sin

i i w
i i w

x x r  y y r  (5) 



for all i {c, e, f, g, h}.The energy E2 consumed by the robots 
to translate the box by a given distance rw is given by 

2 w wE F r                                         (6)

where Fw is the sum of the pulling and pushing forces applied 
by the robots. The corresponding time 2 is obtained as,

2
2 w

w

r M
F

       (7)

C. Translation Perpendicular to Length 
In order to move the box perpendicular to its length, the 

robots pull the box in the same directions with forces parallel 
to its width. Let the sum of those forces applied be Fl and the 
new position of the vertices of the box be E'''(xe

''', ye
'''), F'''(xf

''', 
yf

'''), G'''(xg
''', yg

'''), H'''(xh
''', yh

''') and the center be C'''(xc
''', yc

'''). 
Expression (8) gives the co-ordinates of the vertices after 
translation of the box. 

sin
cos

i i l
i i l

x x r  y y r (8)

for all i {c, e, f, g, h}. The energy E3 required to bring about 
this movement is

3 l lE F r (9)
and the time 3 required for translation is 

3
2 l

l

r M
F

(10)

Fig. 1 The three steps involved in local planning: rotation of the box by 0, 
and its translations along the length and the width by rw and rl respectively

III. CONSTRUCTION OF THE OBJECTIVE FUNCTIONS 

In this paper, the energy consumed by the robots and the 
time required to execute the box-pushing task are considered 
as two conflicting primary objective functions [19 . The
time and energy objectives need to be optimized here before 
each step of local movement of the box (for local planning) to 
select the optimum next position among many alternatives. 
The secondary objective (so) in the present context is
concerned with i) the distance between the next position of the 
box and the goal position and ii) the smoothness of the 
traversed path. The secondary objective function in the present 
case ensures that the energy- and time-optimal optimization 
policy i) does not derive any new position moving away from 
the goal and ii) results in a smooth trajectory. 

In the process of selecting next position of the box from its 
current position, we should take care that the next position is 
not in the close vicinity of obstacles/sidewalls of the robots 
workspace. This is ensured by a penalty function. The penalty 

function has a large value when the next position of the box is 
close enough to an obstacle or sidewall. It offers a small 
penalty when the next position is away from the obstacle or 
sidewall of the world map.  

 
Fig. 2 Diagram illustrating the calculation of d

A. The Energy Objective 
The first objective function considering the total energy 

required by the twin robots for one complete step of local 
movement is given by 

1 1 2 3J E E E so penalty  (11) 

, ,

2 1 1

where (| | | |) ( )

and ( ) max
min( ( , ), ( , ))

e gl c t gl c t t
t

i
t

i i i i i

so K x x y y s C

s C
dist C C dist C C

(12) 

Here Ct(xc,t, yc,t), Ct+1(xc,t, yc,t) and Cg(xgl, ygl) respectively 
denote the positions of the center of mass of the box at the t-th 
(current) and the t+1-th (next) instants and at the pre-defined 
goal location and Ke is a constant. i is the angle made by the 
extended line segment joining the trajectory points Ci 1 and Ci 
with the line segment connecting points Ci and Ci+1. dist(Ci, 
Cj) symbolizes the distance between the mass centers of the 
box at the i-th and j-th time instants. Minimization of s(Ct) 
enhances the smoothness of the trajectory planned so far. 

The penalty is defined as a function of distance d of the next 
position of the box from the obstacles and from the boundary 
wall of the workspace. It is given by 

 stpenalty f d (13) 
where fst is a constant, and d is a function of distance of the 
box with obstacles and sidewalls, and is measured as

1 2 1 2 3 4min( , , , , , )w w l l w wd d d d d d d (14) 
where dw1, dw2, dw3, dw4, dl1, dl2 are the distances of the vertices 
of the box withfrom the static obstacles and the sidewall of the 
workspace as shown in Fig. 2. These are the range data 
obtained from the distance finding sensors of the robots. It is 
also seen that as the calculation of d depends on the noisy 
sensory data, the objective functions also become noisy.
B. The Time Objective 

The time required for the twin robots to transfer the box to 
its next position in one-step is used to design the second 
objective function J2, given by 

2 1 2 3  + J so penalty (15) 

, ,

2 1 1

where (| | | |) ( )

and ( ) max
min( ( , ), ( , ))

t gl c t gl c t t
t

i
t

i i i i i

so K x x y y s C
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dist C C dist C C

(16) 
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where Kt is a constant. Other symbols of (16) carry the same 
meaning as in J1.

IV. AN OVERVIEW OF NOISY NON-DOMINATED SORTING 
BEE COLONY (NNSBC)

NNSBC, proposed in [9], is a population-based 
metaheuristic algorithm, capable to handle noise in the 
objective surfaces (fitness landscapes). An overview of 
NNSBC for minimizing N noisy objective functions is given 
below. 

A. Initialization   
NNSBC commences from a population

1 2( ) [ ( ), ( ),..., ( )]TNPG Y G Y G Y GP  of NP, D-dimensional 
food sources (representing trial/candidate solutions of the 
MOO problem) ,1 ,2 ,( ) { ( ), ( ),..., ( )}i i i i DY G y G y G y G at the current 
generation G = 0 by uniformly randomizing in the range

min min min min
1 2= { , ,..., }DY y y y  and max max max max

1 2= { , ,..., }DY y y y ,
given by

min max min
, ( ) rand(0,1) ( )i j j jjy G y y y (17)

for j=[1, D] and i=[1, NP]. Here rand(0, 1) is a uniformly 
distributed random number in [0, 1]. The sample size nk,i for 
the periodic evaluation of the k-th fitness ( ( ))k iJ Y G is set to 
the minimum sample size nmin for k=[1, N] and i=[1, NP].  

B. Evaluation of Expected Fitness

First ( ( ))k iJ Y G is evaluated for nk,i times. Then the 
minimum and the maximum values of the observed fitness 
samples are recorded as Jk,i

min and  Jk,i
max respectively. Now 

the entire range [Jk,i
min, Jk,i

max] is divided into pre-defined L
intervals of equal length. The expected fitness Ek,i and the 
variance k,i are evaluated as 

min max
,

1
(( ) 2)

L
k i l

l
E p l l                   (18)

and min max 2 2
, ,

1
(( ) 2)

L
k i l k i

l
p l l E (19)

where pl denotes the probability of occurrence of the fitness 
samples in the l-th interval (with boundary [lmin, lmax]), given 
by

,l l k ip n n      (20)
with nl representing the number of fitness samples in the l-th 
interval for l=[1, L]. This step is repeated for k=[1, N] and 
i=[1, NP].  

C. Employed Bee Phase
An employed bee discovers a new food 

source ,1 , ,( ) { ( ),..., ( ),..., ( )}i i i j i DY G G G Gy y y in the neighborhood 

of ( )iY G by computing yi,j
/(G) using  

, , , ,( ) ( ) rand( 1,1) ( ( ) ( ))i j i j i j k jy G y G y G y G (21)

where rand( 1, 1) is a uniform random variable in [ 1, 1] and 
j and k are randomly selected integers from [1,D] and [1, NP] 
respectively but k . This is repeated for i=[1, NP].

D. Sample Size Adaptation 

The local neighborhood of ( )iY G is formed by a sub-
population of food sources residing within a hyperspace 
bounded by{yi,1

/– y1, yi,2
/– y2,…, yi,D

/– yD}  and {yi,1
/+ y1, 

yi,2
/+ y2,…, yi,D

/+ yD} with yj= (yj
max–yj

min)/NP for j= [1, D]. 
Once the neighborhood is identified, the sample-size, nk,i

/ is 
identified from the fitness variance vk,i in local neighborhood, 
given by

min max max min
, ,arctan( )

2k i k i k
n n n nn v Th (22) 

where nmax represents the maximum sample-size and Thk 
denotes the threshold for the k-th fitness variance. It is set 
equal to the lower quartile of the fitness variances in the 
neighborhood of each population member. After determining 
nk,i

/, Ek,i
/ and k,i

/ are evaluated following the step B. This is 
repeated for k=[1, N] and i=[1, NP]. This adaptive selection of 
sample size effectively balances the computational accuracy 
and the run-time complexity. 

E. Dominance based Selection by Employed Bee

The new food source ( )iY G replaces ( )iY G  if ( )iY G  
dominates ( )iY G  [12]. If they are non-dominated, ( )iY G  is 
appended to P(G). Repeating the step for i= [1, NP] yields a 
population of size S [NP, 2NP].

F. Non-dominated Sorting and Pareto Co-ranking 
The population P(G) is then sorted into a number of Pareto 

fronts (FS(1), FS(2), FS(3), and so on) according to non-
domination [12]. After that, a slightly inferior food 
source ( )jY G FS(f) with f >1, is included in FS(1) if 

, , , ,
, ,

1 1| |k i k j k i j
k i k j

E E K
n n

(23) 

for k= [1, N]. Here ( )iY G FS(1) and the pooled variance 

, , , ,
, ,

, ,

( 1) ( 1)
2

k i k i k j k j
k i j

k i k j

n n
n n

 (24) 

Here K is the neighborhood restriction factor [13]. The 
strategy hinders the loss of information (in noisy environment) 
by providing accommodation to a seemingly inferior solution 
in the approximate Pareto front FS(1), satisfying (23).

G. Truncation of the Extended Population 
The parent population P/(G) (of size NP<S) for the 

onlooker bee phase is formed by selecting the non-dominated 
sets of solutions from P(G) (of size S) according to the 
ascending order of their Pareto ranking. When a Pareto front 
FS(l) is found, which can be partially promoted P/(G), its 
members are again sorted in descending order of crowding 
distance CD [12]. The members with high CD measure are 
prioritized to be promoted to P/(G) until its size becomes NP.

H. Probability Calculation 

The probability of each food source ( )iY G to be selected by 
the onlooker bee is given by

( ) | |iprob i Set NP                            (25) 



where |Seti| symbolizes the number of all food sources being
dominated by ( )iY G for i=[1, NP].

I. Onlooker Bee Phase 
An onlooker bee selects a food source based on its 

selection probability (as given by (25)) ad discovers a new 
member following (21). The sample size and the fitness 
estimates of the new member are evaluated following steps D 
and B. The population P/(G) is updated by following the 
principles as stated in steps E and F. The population P(G+1)  
for the next generation (of size NP) is then formed using the 
methodology of non-dominated sorting and crowding distance
metric.

J. Scout Bee Phase
If the position of a population member cannot be enhanced 

after a pre-defined number of evolutionary generations called 
‘limit’, it is replaced by a randomly reinitialized position by 
the scout.
After each evolution, we repeat from step C until termination 
condition for convergence is satisfied.  

V. EXTENDED NOISY NON-DOMINATED SORTING BEE 
COLONY (ENNSBC)

The NNSBC algorithm is extended using the following two 
proposed concepts by modifying its two steps: i) evaluation of
the expected fitness and ii) the dominance-based food source 
selection by employed/onlooker bees, as introduced in section 
IV. The expected fitness evaluation phase is amended by 
considering the non-uniform quantization of the fitness sample 
space of individual trial solutions. The selection phase is 
extended by replacing the deterministic dominance criteria 
with a probabilistic estimate in the noisy environment. 

The extended NNSBC, called ENNSBC is similar with 
NNSBC except modifications in steps IV.B and IV.E as given 
below. 
A. Sample-Distribution-based Fitness Estimation

The alternative approach proposed to estimate the fitness 
of a food source in the noisy environment aims at partitioning
the fitness sample space based on the density of its fitness
samples. Then the expected value of the fitness samples is 
regarded as its true fitness estimate. The proposed strategy is 
concerned with biasing the true fitness estimate of a trial 
solution towards the fitness samples in the crowded zones in 
the sample space, while dealing with the rare fitness samples 
with less significance. It presumes that the rare fitness samples 
stem from the jeopardizing effect of noise. Sample-
distribution-based fitness estimation (SDFE) includes four 
main steps:
(a) Selection of non-uniform intervals in the fitness sample 
space: We first determine the variance Vk,i of the measured 
samples of the k-th fitness of trial solution ( )iY G , the 
minimum and the maximum values of the observed fitness 
samples Jk,i

min and  Jk,i
max respectively. Now the entire range

[Jk,i
min,  Jk,i

max] is first partitioned into two intervals of equal 
lengths, respectively represented by [Jk,i

min,  Jk,i
mid] and [Jk,i

mid,  
Jk,i

max], where

 mi d min max
, , ,( ) ) / 2k i k i k iJ J J . (26) 

If the variance of the fitness samples lying in the first 
interval is found to be greater than Vk,i/nk,i, it is again 
partitioned into two more equal-length intervals, represented 
by [Jk,i

min,  Jk,i
mid,1]   and [Jk,i

mid,1,  Jk,i
mid]  , respectively, where

 mi d,1 min mi d
, ,, ( ) / 2k i k ik iJ J J . (27) 

The same policy is applied for the second interval also. The 
same approach is repeatedly adopted for all subsequent 
intervals until the variance of the fitness samples in each 
interval becomes less than Vk,i/nk,i. Consequently, the entire 
sample space [Jk,i

min,  Jk,i
max]  is now divided into L intervals 

of unequal length as indicated in Fig. 3.

Fig. 3 Non-uniform fitness intervals in the sample space

(b) Probability of occurrence of the fitness samples: The 
proposed nonuniform partitioning of the fitness sample space 
indicates that the fitness samples in the lengthy intervals are 
rare samples, probably resulting from noise contamination. 
Therefore, their involvement in the true fitness estimation of 

( )iY G should not be considered similarly to that of the fitness 
samples in the shorter intervals. The contribution of the fitness 
samples of the interval l towards the fitness estimate of the 
trial solution ( )iY G is quantitatively evaluated by the 
probability measure pl as in (20) for l=[1, L].
(c) Expected fitness estimation: The expected estimate ,k iJ  

of fitness ( ( ))k iJ Y G  is obtained by  

, ,
1

L
l

k i l k i
l

J p J .                    (28) 

where Jk,i
l denotes the median value of the fitness samples of 

( ( ))k iJ Y G in the l-th interval, for l = [1, L]. The expected 

value thus obtained offers a distinct estimate of ( ( ))k iJ Y G  
from the local distribution of its noisy fitness samples over a 
wide space [Jk,i

min,  Jk,i
max]. The median value of the fitness 

samples lying a particular interval, say l, is used as its 
representative (instead of the average value (lmin+lmax)/2 of the 
l-th segment with boundary [lmin, lmax]) because the median 
value of a frequency distribution is less prone to noisy 
measurements. A schematic diagram of the expected fitness 
evaluation of the k-th objective is given in Fig. 4. The entire 
procedure is executed for k= [1, N] and i=[1, NP].
(d) Spread of the fitness samples: The level of contamination 
of noise on ( ( ))k iJ Y G  can be modeled by the spread sk,i of its 

sample values away from its expected estimate ,k iJ for k= [1, 
N]. To calculate sk,i, first the median values of fitness samples 
of each of the L intervals are sorted in ascending order of 
magnitude. The interquartile range (IQR) of the sorted list of 
medians is then regarded as a unique measure of sk,i as defined 
by 

Jk,i
min

……… ………
1st interval l-th interval L-th interval

Jk,i
max



, ,0.75 ,0.25( ( )) ( ( ))k i k i k is Q Y G Q Y G  .    (29)

 
Fig. 4 Expected fitness calculation. 

Here, ,0.25 ( ( ))k iQ Y G and ,0.75 ( ( ))k iQ Y G respectively 
symbolize the lower and the upper quartile of the sorted list. 
IQR is capable to capture the true spread of samples in the 
noisy environment better than the variance (as in (19)) as the 
measurement of IQR eliminates the impact of the extreme 
values of the noisy fitness samples. 

The merits of the proposed strategy lie in the following 
counts. 1) It overcomes the difficulty of the conventional 
averaging approaches, concerned with referring to the average 
value of the fitness samples as the effective fitness estimate of 
a trial solution, presuming equal probability of occurrence of 
all samples (which may not hold true in the presence of noise). 
2) It requires no prior setting of the number of fitness intervals 
L (as in section IV.B). 3) The non-uniform partitioning of the 
sample space better captures the noisy local distribution of 
fitness samples. 4) The expected fitness considering the 
median values of the fitness samples of each interval provides 
more robust fitness estimate than representing each interval 
with its mean value. 5) The spread of the noisy fitness samples 
is better represented by IQR than the fitness variance. 
B. Dominance based Selection by Employed/Onlooker Bees

The strict inequality conditions of deterministic dominance 
of ( )iY G over ( )jY G , as given by the following definitions 

(a) ( ( )) ( ( ))k i k jJ Y G J Y G for k =[1, N] and

(b) ( ( )) ( ( ))l i l jJ Y G J Y G for at least one l [1, N]
cannot correctly examine the dominance criteria when
both ( ( ))k iJ Y G and ( ( ))k jJ Y G are contaminated with noise for 
k=[1, N]. Deterministic dismissal of apparently inferior 
candidate solutions from the optimal Pareto front (due to 
deterministic dominance criteria) may instigate a potential loss 
of a quality solution in the presence of noise. To circumvent
this, a stochastic dominance criterion is adopted for testing the 
extent of dominance of ( )iY G over ( )jY G , denoted 

by ( ) ( )i jY G Y G , using probability of dominance 

, , , ,
1

( ( ) ( )) ( ) ( )
N

k i k j k i k ji j
k

p Y G Y G p J J p J J  (30)

where , ,
, ,

1( ) 1
1 exp( ( ))

k i k j
k i k j

p J J
c J J

   (31)

and           , ,
, ,

1( )
1 exp( ( ))

k i k j
k j k i

p J J
c J J

.     (32)

The proposed probabilistic dominance criterion assists us 
to maintain the optimal Pareto front up to certain degree of 
confidence. The Fermi-Dirac probability distributions in (31) 
and (32) guarantee that 
1. For c approaching and , ,k j k iJ J for k = [1, N], 

( ( ) ( )) 1i jp Y G Y G signifying ( ) ( )i jY G Y G .

2. For c approaching  and , ,k j k iJ J for k = [1, N], 

then ( ( ) ( )) 0i jp Y G Y G  signifying ( ) ( )j iY G Y G . 

3. If , ,k j k iJ J for k= [1, N], then ( ( ) ( )) 1 4N
i jp Y G Y G  

implying the non-dominance relationship between 
( )iY G and ( )jY G . 

VI. EXPERIMENTS AND RESULTS

The experimental settings used for the comparative study 
of the relative performance of the proposed algorithm with its 
competitors along with the performance analysis and the 
results are summarized in this section. This section includes 
three experiments, including the analysis of relative 
performance of ENNSBC over other noisy EMOO algorithms, 
i) for optimizing noisy benchmark functions and ii) to solve 
multi-robot box-pushing problem in a) simulation environment 
and b) real-world platform. The comparative framework for 
relative performance analysis of the proposed ENNSBC with 
other existing noisy EMOO algorithms include NNSBC [9], 
differential evolution for multi-objective optimization with 
noise ] and non-dominated sorting genetic 
algorithm-II with -dominance operator -II-A [11]. The 
parameter settings of the competitor algorithms can be found at 
http://www.2shared.com/complete/Ez6f6FH9/wcci_2016_enns
bc_supplementary.html.
A. Simulation Results for Noisy Benchmark Function 

Optimization 
Experiments are undertaken to analyze the comparative 

performance of ENNSBC with its contenders (including 
NNSBC, DEMON and NSGA-II-A) to optimize noisy versions 
of 23 CEC’2009 recommended benchmark functions [15] with 
respect to hyper-volume ratio metric. The noisy versions of 
CEC’2009 benchmark functions are obtained by contaminating 
the true objective function values with noise samples taken 
from Gaussian [16], Poisson [17], and Rayleigh [18] 
distributions. The comparative analysis of the performance of 
the competitor algorithms can be found at 
http://www.2shared.com/complete/Ez6f6FH9/wcci_2016_enns
bc_supplementary.html. The reported results reveal that the 
proposed ENNSBC outperforms other algorithms in a 
statistically significant fashion. 
B. Performance Analysis of ENNSBC for Multi-Robot Box-

Pushing Problem 
The experiments are carried out in two phases, first by 

computer simulation on a Pentium machine, and afterward on 
platform of Khepera-II mobile robots.  
(a) Experiments in Simulated Environment  

The multi-robot box-pushing problem is implemented in C 
on a Pentium processor. Experiments are designed to study the 
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performance of the proposed ENNSBC algorithm over its 
contenders to handle the noisy MOO in the multi-robot box-
pushing problem. In all the experiments, the distance d is 
contaminated with additive noise samples  such that 

d d                                 (33)
where follows certain specific distribution, including 
Gaussian, Poisson ad Rayleigh. 

The structure of a solution vector used in the ENNSBC 
algorithm is shown in Fig. 5. It begins with an initialization of
the current position (xc,t, yc,t) of the center of mass of the box at 
the t-th instant and calls the proposed ENNSBC algorithm to 
evaluate Fw, Fl, , rl and rw. Then (xc,t, yc,t) is updated and 
the incremental energy and time are computed. The process is 
continued until (xc,t, yc,t) is close enough to the goal position 
(xgl, ygl). The pseudo-code for solving the multi-robot box-
pushing problem is given in 
http://www.2shared.com/complete/Ez6f6FH9/wcci_2016_enn
sbc_supplementary.html.

Fw Fl  rw rl

Fig. 5 Structure of a food source (trial solution) in ENNSBC algorithm

The optimized solution of the box-pushing problem for 
each local movement of the box can be obtained by decoding 
the best food source from the approximate Pareto front A
(FS(1) of ENNSBC) optimizing the energy- and time-
objectives of (11) and (15) respectively. It is, however, notable 
that all food sources in A are equally good (non-dominated). 
To select the best one among many possible candidates, the 
following composite measure is considered for each food 
source iY A . 

* *
1, 2,max( , )    for [1,| |]i i iJ J J i A                (34)

where |A| is the number of non-dominated solutions in A and 
| |*

, , ,
1

A
k i k i k l

l
J J J (35)

represents the normalized estimate of Jk,i
* (0, 1) for k=[1, 2]. 

The effective non-dominated food source iY A having the 
lowest Ji for i= [1, |A|] is now identified for decoding the 
optimal solution (food source) for the single step local 
movement of the box as obtained by ENNSBC. 

In MOO-based simulation of the multi-robot box-pushing 
problem, the constants Ke in (12) and Kt in (16) are set after 
some experimentation. Ke and Kt are varied in the range [1, 50]
with an incremental step size of 5. It is observed that there is 
no significant change in performance for Ke 10, and Kt 10. 
We have thus fixed Ke = 10 and Kt = 10. Fig. 6 demonstrates 
an initial configuration of the world map for each of the three 
arenas, and the starting and the goal positions of the box. We 
compare the relative performance of our proposed ENNSBC

algorithm with NNSBC, DEMON, and NSGA-II-A by varying 
the noise variance 2 in [0.01, 1]. The experiments are 
repeated for the same three arenas and all the programs are run 
for 100 times on each arena.  

Results of the experiments performed are summarized in 
Table-I for the first arena (for space economy). Three 
performance metrics, namely 1) the (average) total energy E 
consumed by the robots, 2) the (average) total time T required 
by them, and 3) the (average) total number of steps S 
(rounded-off to integer) taken by the robots to reach the goal 
have been used here to determine the relative merits of 
ENNSBC over other algorithms. The standard deviation of 
each performance metric obtained by the algorithms is 
presented within the parenthesis below the respective average 
value (over 100 runs). It is clear from Table-I that with 
increasing noise variance, the values of all the three metrics 
increase significantly. Moreover, it is also evident from Table-
I that the jeopardizing effect of noise in deteriorating the 
performance of the algorithms depends on its distribution. The 
detrimental effect of Rayleigh noise is the most prominent 
one, while all the algorithms have performed satisfactorily in 
the presence of Gaussian noise. However, the results given in 
Table-I indicate that the performance of the proposed 
ENNSBC remains consistently better than its competitor 
algorithms with respect to the energy, the time, and the 
number of steps required to complete the task for a particular 
value of 2, irrespective of noise distribution. The simulations 
results for these experiments in three arenas in the presence of 
noise following Gaussian, Poisson, and Rayleigh distribution 
(with specific variance) are respectively given in Fig. 7 . The 
final configurations of the world maps for three different 
arenas in presence of measurement noise (of different settings) 
in Fig. 7 reveal that the proposed ENNSBC 
outperforms the other competitors with respect to the total 
number of steps taken by the robots to complete the task.
(b) Experiments in Real Environment on Khepera- II 
Platform 

The relative performance of the contender NMOEAs has 
also been studied on a real-world box-pushing problem using 
two Khepera-II mobile robots in five different configurations 
of a world map of 8×6 grids of equal size. The range data of 
each robot is measured by eight infrared sensors and is 
represented in a range [0, 1023] corresponding to an obstacle 
at a distance [2 cm, 5 cm] from the sensor. Each robot is also 
equipped with one caster wheel and two motor driven side 
wheels. To realize the box-pushing problem in the real world 
using noisy MOO formulation, the robots are connected to a 
Pentium IV personal computer for controlling their motor 
movements using an NMOEA.  

 
Fig. 6 Initial configuration of the world maps



(a)   (b) 

                        
(c)   (d) 

Fig. 7 Path followed by the box in the first arena for zero mean Gaussian noise variance 2=0.7 using (a) ENNSBC (b) NNSBC (c) DEMON and (d) NSGA-II-A 

(a)   (b) 

                                
(c)   (d) 

Fig. 8 Path followed by the box in the second arena for Poisson noise variance 2=0.45 using (a) ENNSBC (b) NNSBC (c) DEMON and (d) NSGA-II-A
TABLE I-A: PERFORMANCE ANALYSIS OF COMPETITOR ALGORITHMS FOR FIRST ARENA IN PRESENCE OF GAUSSIAN NOISE (BEST METRIC VALUES MARKED IN 

BOLD)

Noise Variance ENNSBC NNSBC DEMON NSGA-II-A
E (kJ) T (sec.) S E (kJ) T (sec.) S E (kJ) T (sec.) S E (kJ) T (sec.) S

Gaussian 

0.2 33.869 371.79 4 26.732 382.07 5 36.151 386.35 5 42.701 421.34 6
(11.816) (25.023) (0.011) (10.450) (26.359) (0.078) (12.155) (28.054) (0.138) (13.229) (28.834) (0.162)

0.4 26.770 35.502 6 433.92 443.62 6 44.491 442.28 6 42.283 434.18 6
(14.814) (15.305) (0.229) (29.724) (32.004) (0.254) (16.502) (31.449) (0.263) (15.808) (30.381) (0.337)

0.6 30.065 463.02 8 38.298 467.58 7 43.928 479.52 8 57.823 579.78 8
(18.154) (33.514) (0.469) (18.505) (34.213) (0.380) (19.418) (34.469) (0.528) (20.617) (37.043) (0.547)

0.8 33.552 598.71 9 43.989 599.51 9 49.475 616.05 9 67.578 630.09 9
(21.689) (37.715) (0.568) (21.970) (38.238) (0.616) (22.754) (38.436) (0.699) (23.919) (38.580) (0.753)

1.0 41.281 609.57 10 44.293 611.00 12 58.876 624.36 11 78.599 657.22 12
(24.605) (39.185) (0.794) (26.399) (40.310) (0.913) (27.593) (40.610) (0.831) (29.153) (43.319) (0.934)



                                        
(a)    (b)

 
(c)    (d)  

 Fig. 9 Path followed by the box in the third arena for Rayleigh noise variance 2=0.5 using (a) ENNSBC (b) NNSBC (c) DEMON and (d) NSGA-II-A 
TABLE I-B: PERFORMANCE ANALYSIS OF COMPETITOR ALGORITHMS FOR FIRST ARENA IN PRESENCE OF POISSON AND RAYLEIGH NOISE (BEST METRIC VALUES 

MARKED IN BOLD)

Noise Variance ENNSBC NNSBC DEMON NSGA-II-A
E (kJ) T (sec.) S E (kJ) T (sec.) S E (kJ) T (sec.) S E (kJ) T (sec.) S

Poisson

0.2 34.667 383.57 5 38.023 389.00 6 39.540 396.73 6 49.702 436.67 6
(10.672) (25.134) (0.054) (11.884) (26.822) (0.083) (12.412) (28.517) (0.149) (13.579) (29.178) (0.165)

0.4 36.835 442.35 7 43.954 440.90 8 50.731 469.74 9 55.869 476.84 9
(15.036) (30.750) (0.243) (15.329) (29.857) (0.255) (16.254) (31.822) (0.285) (16.877) (32.735) (0.350)

0.6 39.711 474.56 9 54.401 532.73 9 56.685 563.61 10 65.467 631.96 11
(18.457) (34.002) (0.442) (18.801) (34.249) (0.473) (20.361) (35.931) (0.530) (20.627) (37.146) (0.549)

0.8 47.368 608.60 11 59.595 636.56 11 56.362 626.98 11 83.533 645.11 12
(21.790) (37.889) (0.585) (22.770) (38.506) (0.654) (22.219) (38.240) (0.748) (23.997) (38.667) (0.757)

1.0 51.194 623.25 12 70.075 655.05 12 75.104 658.90 13 84.995 678.31 14
(25.576) (39.435) (0.814) (26.487) (40.403) (0.840) (28.126) (40.694) (0.917) (29.373) (43.348) (0.957)

Rayleigh

0.2 38.936 400.98 6 47.931 392.48 6 54.741 424.72 7 66.813 456.01 8
(11.376) (27.387) (0.075) (12.112) (25.715) (0.129) (13.073) (28.773) (0.152) (14.523) (29.481) (0.196)

0.4 45.736 444.64 8 53.497 476.56 8 68.239 482.14 8 64.333 482.69 9
(15.214) (30.095) (0.251) (15.620) (30.781) (0.257) (17.692) (31.889) (0.311) (16.392) (33.487) (0.351)

0.6 55.894 539.80 10 61.466 563.92 11 64.433 579.70 11 68.888 650.69 11
(18.469) (34.174) (0.450) (19.148) (34.427) (0.506) (20.542) (36.524) (0.538) (21.659) (37.147) (0.567)

0.8 65.433 635.72 11 58.590 643.18 12 70.912 645.17 11 86.519 650.71 12
(22.341) (37.952) (0.602) (21.887) (38.356) (0.689) (23.088) (38.522) (0.751) (24.367) (38.908) (0.779)

1.0 73.837 655.63 13 79.482 674.76 14 88.013 678.39 15 90.145 699.68 15
(26.355) (39.768) (0.825) (27.507) (40.405) (0.890) (28.872) (41.887) (0.929) (29.653) (43.903) (0.966)

The sensory data of the robots, representing their real-world 
distances from the obstacles/sidewall of the workspace, are 
transferred to the connected computer through RocketPort 
USB Serial Hub-II. Finally, time division multiple access is 
used to transfer the necessary commands to the robots for the 
effective movement of their motors towards the next position
of the box, as determined by the NMOEA running on the 
connected computer. One sample run of the box-pushing 
problem realized in the real environment using ENNSBC is 
given in Fig. 10 in the presence of zero mean Gaussian noise 
of variance 0.2. Fig. 11 (a) and (b) pictorially represent the 
evolution of the total energy consumed and the total time 
taken by the robots, averaged over 50 runs, to execute the 
complete task. Fig. 11 confirms that ENNSBC outperforms the 
remaining three algorithms with respect to minimizing both 
objectives irrespective of noise variance.

 
Fig. 10 Path followed by the box by execution of ENNSBC algorithm in 
Khepera environment with four obstacles and zero mean Gaussian noise 

variance 2=0.2
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Fig. 11 (a) Plot of average energy consumed by robots (over 50 runs) with 
zero mean Gaussian noise variance
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Fig. 11 (b) Plot of average time taken by robots (over 50 runs) with zero mean 
Gaussian noise variance 

VII. CONCLUSION

The paper studies the scope of noisy MOO in multi-agent 
robotics using an extension of NNSBC algorithm. The noisy 
MOO problem is simulated by adding noise (following certain 
distribution including Gaussian, Poisson, and Rayleigh) with 
the distance measured by the robot sensors in box-pushing 
problem. The problem is formulated in multi-objective settings 
to minimize both the energy consumed, and the time required 
by the twin robots to transport the box to the goal position.

Experiments have been performed to study the 
performance of the proposed ENNSBC with its three
contenders, including NNSBC, DEMON, and NSGA-II-A. All 
the experiments are repeated 100 times to determine the 
average performance of all algorithms with respect to box 
transfer-time, energy consumption, and the number of steps of 
planning required to complete the job. The experiments 
undertaken confirm that with increase in noise variance, the 
total time spent and the total energy consumed as well as the 
number of steps required by the robots increase. An intuitive 
interpretation of this phenomenon is that with increase in noise 
variance, robots face more constraints to plan local 
trajectories, thereby increasing the values of the three metrics. 
For a predefined value of noise variance, the experiments in 
different workspaces (both in simulation and in real-world 
environment) reveal that the proposed ENNSBC outperforms 
its competitors significantly, irrespective of noise distribution.
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