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Abstract 

 

Little evidence exists with regard to changes in cardiac strain that occur during 

submaximal exercise in young males.  The aims of the study were to evaluate the changes 

that occur in longitudinal (L), radial (R) and endocardial circumferential (EC) strain 

during submaximal upright cycle ergometry and to examine the test-retest reproducibility 

of these measurements.  Fourteen recreationally active, adolescent (age: 17.9 ± 0.7 

years), males volunteered for the study.  All subjects underwent an incremental (40W) 

submaximal cycle ergometer test.  L, R, and EC strain values were obtained using 

speckle tracking, from two-dimensional B-mode images of the left ventricle (LV) during 

rest and the initial stages of submaximal exercise (40W and 80W). The average of 6 LV 

segments was used to determine both peak wall deformation (%) and the time to peak 

deformation (ms).  There was a statistically (P<0.05) significant increase from rest to 

submaximal exercise for peak deformation for L, R and EC strain.  There was a 

statistically significant (P<0.05) decrease from rest to submaximal exercise for time to 

peak for L and R and EC strain and between submaximal workloads for time to peak for 

L strain and EC strain.  Coefficients of variation demonstrated reproducibility for upright 

strain and strain rate measurements similar to published supine measurements.    This 

study has demonstrated that changes in left ventricular wall deformation (L, R and EC 

strain) that occur during the transition from rest to submaximal exercise can be reliably 

measured and confirm that a healthy left ventricle has a hyperdynamic response to 

exercise. 
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Introduction 

 

Quantification of regional planes of movement of the myocardium were originally 

derived from tissue Doppler technology and permitted the first calculations of regional 

displacement (strain) and rate of displacement (strain rate).1 .  This technique has been 

largely superseded by speckle tracking echocardiography,2 which has the advantages of 

not being  affected by translation or tethering of adjacent segments and minimally 

affected by angle of insonation in standard views3,4.    Myocardial mechanics can be 

measured in multiple planes, with longitudinal, radial and circumferential strains 

standardized and shear planes still under investigation.  Application of speckle-tracking 

derived strain and strain rate data have been proven to be useful for the assessment of 

systolic function in individuals with cardiovascular disease5 and to evaluate regional wall 

motion during strenuous acute exercise6. 

 

To date, almost all of the investigations into the pattern of left ventricular strain changes 

during exercise has been limited to supine and semi-supine exercise7,8.  Increases in 

systolic longitudinal strain have been noted from rest to exercise, but with no subsequent 

change with increasing exercise intensity, whereas, circumferential strain continued to 

increase with increasing exercise intensity8.   In the one study in which the subjects 

exercised in an standing treadmill protocol Reuss et al.,9 demonstrated an increase in 

strain and strain rate from rest to peak exercise in a group of healthy, adults.  However, 

strain data were acquired within one minute after the cessation of exercise and with the 

subjects returned to the left-lateral decubitus/horizontal position.  It is unclear whether 



4 

 

this same pattern of change would be present while the subject continued to exercise and 

was maintained in the upright exercise position for cycle ergometry.   

 

Previous work from our laboratory10 has demonstrated an orthostatic effect upon cardiac 

structure and function that could influence strain and strain rate responses during 

exercise.  These data10 demonstrated decreases in the left ventricular myocardial 

relaxation velocity (TDI-E’) in the upright compared to the supine position.  Along with 

this velocity reduction, decrements in ventricular volume were noted, while left 

ventricular mass remained unchanged, resulting in a relative concentric hypertrophy with 

an associated increase in wall stiffness.  Interrogation of these wall stiffness effects and 

the impact of altered loading conditions that accompany exercise in the upright position 

has not been fully explored via cardiac strain measurements with advanced speckle 

tracking techniques. One of the unique aspects of the present study was therefore to 

acquire strain and strain rate data during exercise and with the subject maintained in the 

upright position.  

 

Prior to evaluating the pattern of strain data with upright exercise, the stability (test-retest 

reproducibility) of these data needed to be determined.  Currently, there are limited data 

in the literature with regard to the test-retest reproducibility of cardiac strain data11 

acquired during exercise. 

 

Consequently, the primary aim of the study was to evaluate the changes that occur in 

longitudinal, radial and endocardial circumferential strain during upright submaximal 

cycle ergometry in a group of adolescent males and it was hypothesised that the healthy 
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left ventricle would demonstrate a hyper-dynamic response to submaximal exercise.  The 

secondary aim was to evaluate the test-retest reliability of these data during exercise and 

it was hypothesised that acceptable levels of reproducibility of cardiac strain data would 

be derived from upright cycle ergometry exercise.  

 

 

Methods 

 

Subjects 

The subjects (age: 17.9 ± 0.7 years; mass: 72.1 ± 8.2 kg and stature: 182 ± 7 cm) were 

recruited from a local school. All participants were recreationally active, but were not 

undergoing any systematic training . The subjects were of similar maturity status (4-5) as 

measured by Tanner self-assessment12.  

 

All subjects performed an incremental exercise test to volitional exhaustion on a cycle 

ergometer (Lode Excalibur Sport, Groningen, The Netherlands). Initial and incremental 

loads were 40W, with 3-minute stages and a constant cadence of 60rpm.  Subjects 

performed two progressive cycle ergometer tests to exhaustion, with a 3-day gap between 

test sessions.  Previous work from our laboratory13 demonstrated no time-of-day effect on 

cardiovascular responses to cycle ergometer exercise to exhaustion in a group of 

adolescent males.  Therefore, the subjects in the present study were not tested at the same 

time of day on both visits. 

 

Echocardiographic imaging of the left ventricle was performed during the last 30 seconds 

of each stage from parasternal short axis (at the level of the mitral papillary muscles) and 
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apical four-chamber views with the subject in an upright but forward-leaning position on 

the cycle ergometer.  A standard clinical echocardiographic system with a 5 MHz phased 

array transducer was used for all subjects (Model iE33, Philips Medical Systems, 

Eindhoven, the Netherlands).  Imaging parameters were set to maximize 2D frame rate, 

gated to real-time ECG tracings and digitally stored without compression.  Due to the 

limited time available for image acquisition and respiratory artifact from subject 

tachypnea, the cardiac cycle with the best-defined endocardium was chosen for analysis 

to limit confounding effects of regional dropout or excessive cardiac translation with 

hyperpnea. 

 

Post-exercise test analysis was performed using a feature and speckle tracking algorithm 

on the two-dimensional B-mode images (Velocity Vector Imaging 2.0, Siemens Medical 

Solutions, Mountain View, CA, USA) by a single, experienced observer (PB).  Average 

peak longitudinal and average peak circumferential strain and strain rate were calculated 

from the average of 6 cardiac segments.  Average peak radial strain and strain rate were 

calculated from combined simultaneous endocardial and epicardial tracings averaged for 

6 cardiac segments.  Average time to peak strain and strain rate was calculated similarly 

using the average of 6 cardiac segments (Figure 1).  Peak strain and strain rate were 

defined as the maximum negative (longitudinal, circumferential) or positive (radial) 

deflection of the strain curve.  Peak strain and strain rate were not normalized to Doppler-

derived aortic valve closure, to avoid error introduced from using non-simultaneous 

Doppler information at elevated heart rates.  Analyses of strain and strain rate 

measurements were limited to rest, 40W and 80W during the incremental exercise 
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protocol to limit subject artifacts that could arise from tachycardic responses at higher 

exercise intensities.   

 

Statistical Analysis  

A one-way repeated measures ANOVA was used to test for any workload effect. If this 

was identified for any of the dependent variables, Bonferroni adjusted paired t-tests were 

used to identify the source of the differences.  Coefficients of variation (%) were derived 

for peak strain for longitudinal, circumferential and radial measurements at rest, 40W and 

80W.  Data are presented as mean ± standard deviation and statistical significance was 

accepted at the p ≤ 0.05.  SPSS Version 20 was used to perform all statistical analyses. 

 

Results 

 

Imaging success 

 

Peak systolic strain and strain rate were calculated successfully in all myocardial 

segments and views, for each individual, at each pre-defined workload (rest, 40W and 

80W). No segments were excluded from analysis due to inadequate tracking.  

 

Strain 

With respect to peak: longitudinal, radial and circumferential strain, there was a 

statistically significant (p<0.05) increase from rest to both submaximal workloads for all 

three variables (Table I).  Analyses of the time to peak for: longitudinal, radial and 

circumferential strain demonstrated that there was a statistically significant (p<0.05) 

decrement from rest to both submaximal workloads for all three variables (Table I).  In 
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addition, time to peak for circumferential strain also decreased (p<0.05) with increasing 

exercise intensity (40W to 80W). 

 

Strain Rate 

With regard to peak: longitudinal, radial and circumferential strain rate, there was a 

statistically (p<0.05) significant increase from rest to both submaximal workloads for all 

three variables (Table II).  Evaluation of the time to peak for: longitudinal, radial and 

circumferential strain rate illustrated the following trends.  There were statistically 

(p<0.05) significant decrements between rest and 40W for time to peak for longitudinal 

and circumferential strain rates (Table II).  Statistically significant (p<0.05) decrements 

were also noted between rest and 80W for time to peak for radial strain rate and 

circumferential strain rate (Table II).  Furthermore, a statistically significant (p<0.05) 

decrease in time to peak for circumferential strain rate was also noted (Table II) with an 

increase in exercise intensity (40W to 80W). 

 

Test-retest reproducibility 

The mean and SD for the test-retest values are stated in TableIII.  The coefficient of 

variation data (CV) derived from the longitudinal and circumferential analyses were the 

most stable data from rest to 80W.  Greater variability was noted for the CV obtained 

from the radial analyses (Table III). These absolute workloads also represented, 

approximately the same (p>0.05) relative exercise intensity (expressed as a percentage of 

VO2peak) for the two sets of measurements (Visit 1 40W: 30±8 %VO2peak vs. Visit 2 

40W: 28±6%VO2peak) and (Visit 1 80W: 41 ± 9%VO2peak vs. Visit 2 80W: 39 ± 
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6%VO2peak).  Peak oxygen uptake at the end of the cycle ergometer test was: 3.20 ± 4.9 

L·min-1. 

 

 

Discussion 

During upright cycle ergometry exercise, statistically significant changes were noted 

from rest to submaximal exercise for longitudinal, circumferential and radial strain and 

strain rate. The coefficients of variation generated in this study for the test-retest 

reproducibility of longitudinal and circumferential strain demonstrated that it was also 

possible to obtain reliable cardiac strain data during upright cycle ergometer exercise.  

Greater variation was noted for radial strain and strain rate measurements, consistent with 

the greater variability reported with radial measurements reported in the extant literature.  

The findings from the present study have particular relevance, as most cycle ergometry 

exercise evaluations in clinical and sporting environments are performed in an upright 

position. 

 

The present study demonstrated that peak wall deformation of both longitudinal and 

circumferential strain increased from rest to the first submaximal workload and then 

plateaued, even after there was an increase in exercise intensity. A similar phenomenon 

was noted by8 during semi-supine cycle ergometry in young healthy adults (26 years of 

age).  These authors created an incremental workload protocol of 20, 30 and 40% of 

maximal aerobic power and demonstrated that longitudinal strain remained unchanged 

after the initial workload of 20% of maximal aerobic power.  Longitudinal strain appears 

to be sensitive to both pre-load and after-load, but the evidence from both human15 and 
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animal models16,17  suggests that pre-load has a slightly greater influence on longitudinal 

strain.  Therefore, any increase in venous return, as seen at the onset of exercise, will lead 

to an increase in longitudinal strain with the onset of exercise18.  Longitudinal strain is 

considered to be a surrogate measure of sub-endocardial contractility and there is limited 

evidence to suggest that the sub-endocardium is more sensitive to local tissue de-

oxygenation. Consequently, any lack of change in longitudinal strain could also stem 

from a higher sensitivity to local ischemia and a blunted response to increasing exercise 

intensity19.  The only comparable study, by Reuss et al9 demonstrated changes in strain 

and strain rate with peak exercise, as measured by tissue Doppler imaging, but with the 

peak exercise measurements performed with the subjects off the treadmill and returned to 

a supine/left lateral decubitus position.  The present study built upon the orthostatic 

differences imposed by exercising in a seated position10 (i.e. upright cycle ergometry) 

that better represent the physiologic state of typical exercise. 

 

Equivocal findings were noted with respect to circumferential strain responses during 

exercise. Doucende et al8., noted increased circumferential wall deformation with 

increasing exercise intensity during semi-supine exercise, but this pattern of change was 

not noted during upright cycle ergometer exercise, where a plateau in responses were 

noted with increasing exercise intensity.  It is possible, that orthostatic factors could have 

influenced the differential, circumferential strain responses when comparing upright and 

semi-supine exercise.  Concomitant, with an increase in peak deformation with the onset 

of exercise, a statistically significant reduction in time to peak deformation was noted for 
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longitudinal and circumferential strain, from rest to exercise. This pattern of data was 

also noted with increasing exercise intensity in the present study. 

 

There are no comparable data available in the literature with regard to the test-retest 

reproducibility of obtaining cardiac strain data during upright cycle ergometer exercise. It 

is encouraging that the coefficients of variation for longitudinal and circumferential strain 

derived from this study with the subjects in an upright “normal”position are similar to 

those obtained at supine rest by Oxborough et al.,11.  These researchers11 also 

demonstrated within-day, intra-observer coefficients of variation at rest (peak 

longitudinal strain: 6%, circumferential strain: 7% and radial strain: 19%), again similar 

with the exercise-derived data derived from the present study.  The coefficients of 

variation for peak deformation in radial strain during upright exercise in the present study 

were also larger (16-20%) than both longitudinal and circumferential strain.  These 

findings were not unusual, as it has been previously demonstrated that radial strain is 

only weakly correlated with sonomicrometry14 and is also dependent upon the poorer 

lateral image resolution that is required to capture radial strain data.   

 

The findings from this study are delimited to a group of healthy, adolescent males, with 

echo imaging performed using a single vendor platform and with strain measured using a 

single vendor-neutral analysis tool.  Further work with respect to regional myocardial 

deformation and the rate at which this occurs in the adolescent, female population and 

highly trained youth athletes, and how these results may compare to other vendor 

solutions, is warranted. 
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The methodological implications, however, of the findings from this present investigation 

are multiple. This study has demonstrated that it is possible to obtain reliable strain data 

when individuals are exercising in a normal upright body position and these findings may 

help to remove the constraint of exercising in the semi-supine position chosen for 

imaging convenience in previous strain studies.  As with all studies incorporating feature 

and speckle tracking imaging, it is crucial to maximize acquired frame rates without 

storage compression, as the systolic time interval shortens at higher heart rates.  While it 

is ideal to perform cardiac measurements during breath-holding to minimize cardiac 

translation or respiratory-induced changes in cardiac filling, this is not feasible at 

increasing levels of exercise.  From a practical standpoint, however, end-expiratory-phase 

consistency is possible, as the best image quality will coincide with the least-lung 

expansion obscuring transthoracic windows.  It is also not possible to obtain 

simultaneous Doppler and 2D imaging with an accelerating heart rate to permit accurate 

measurement of timing of aortic valve closure or systolic duration.  Novel approaches to 

determining this simultaneous information will be helpful to future investigations. 

 

In conclusion, the evidence from this novel investigation suggests that reliable 

longitudinal and circumferential strain data can be obtained during upright, submaximal 

cycle ergometer exercise.  Also, significant changes in left ventricular wall deformation 

occur during the transition from rest to submaximal upright exercise and these changes 

confirm that a healthy left ventricle has a hyperdynamic response to exercise. 
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TABLES 

Table I: Left ventricular longitudinal, radial and circumferential strain data at rest and 

submaximal exercise 

 

 Rest 40W 80W 

 Average 

Peak Strain 

(%) 

Time to peak 

(ms) 

Average 

Peak Strain 

(%) 

Time to peak 

(ms) 

Average 

Peak Strain 

(%) 

Time to peak 

(ms) 

Longitudinal  -15.4 ± 1.9*  357.1 ± 37.7* -18.3 ± 1.9 312.2 ± 40.0† -20.5 ± 2.7 275.3 ± 44.5 

Radial 37.5 ± 13.1* 304.6 ± 48.7* 49.5 ± 11.0 263.8 ± 46.7 47.0 ± 15.9 232.4 ± 33.4 

Circumferential -21.6 ± 3.0* 329.5 ± 44.4* -28.7 ± 3.9 275.1 ± 33.3† -28.2 ± 6.6 249.0 ± 28.2 

 

*denotes a statistically (P<0.05) significant difference between rest to both submaximal 

exercise intensities for average peak strain and time to peak deformation. † denotes a 

statistically significant (P<0.05) difference between submaximal workloads (40W and 

80W) for time to peak deformation for Longitudinal Strain.  
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Table II: Longitudinal, radial and endocardial circumferential strain rate data at rest and 

submaximal exercise 

 

 Rest 40W 80W 

 Average 

Peak Strain 

Rate (1/s) 

Time to peak 

(ms) 

Average 

Peak Strain 

Rate (1/s) 

Time to peak 

(ms) 

Average 

Peak Strain 

Rate (1/s) 

Time to peak 

(ms) 

Longitudinal -1.18 ±0.25* 180.9 ±50.4◊ -1.55 ±0.26 147.7 ±34.2 -1.86 ±0.43 143.6 ±46.8 

Radial 2.47 ±0.69* 142.4 ±64.9∆ 3.14 ±0.63 107.7 ±31.8 3.40 ±0.87 100.6 ±36.0 

Circumferential -1.75 ±0.39* 187.9 ±25.1 -2.41 ±0.51 165.6 ±23.9† -2.67 ±0.92 141.0 ±21.5 

 

*denotes a statistically (P<0.05) significant difference between rest to both submaximal 

exercise intensities for average peak strain rate and time to peak deformation.  ◊denotes a 

statistically significant (p<0.05) difference between rest and 40W for time to peak 

deformation.  ∆denotes a statistically significant (p<0.05) difference between rest and 

80W for time to peak deformation.  † denotes a statistically significant (P<0.05) 

difference between submaximal workloads (40W and 80W) for time to peak deformation.  
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Table III:  Mean and SD for longitudinal, circumferential and radial strain peak data 

measured while: sitting, upright, at rest on the cycle ergometer and at 40W and 80W on 

visits 1 and 2.  Derived coefficients of variation (CV) at rest, 40W and 80W 

 

 Rest 40W 80W 

 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 
Peak Longitudinal 

(%)  

-15.4 ± 1.9 -16.1 ± 1.5 -18.3 ± 1.9 -19.2 ± 2.1 -20.5 ± 2.7 -19.5 ± 3.5 

Peak Radial (%) 37.5 ± 13.1 40.9 ± 10.5 49.5 ± 11.0 42.2 ± 10.7 47.0 ± 15.9 42.8 ± 9.6 

Peak 

Circumferential (%) 

 

-21.6 ± 3.0 

 

-23.2 ± 3.0 

 

-28.7 ± 3.9 

 

-25.4 ± 3.0 

 

-28.2 ± 6.6 

 

-27.2 ± 3.9 

Longitudinal CV 

(%) 

9.2 8.2 13.8 

Circumferential CV 

(%) 

8.2 10.4 12.1 

Radial CV (%) 20.5 16.7 20.4 
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FIGURES 

Figure 1: Representative analysis plot of speckle tracking of longitudinal strain data at 

80W for an individual subject.  RA denotes Right Atrium, RV denotes Right Ventricle, 

LA denotes Left Atrium and LV denotes Left Ventricle 

 


