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ABSTRACT 
 

Brain Computer Interfaces (BCI) provide the opportunity to control external devices using the brain 

ElectroEncephaloGram (EEG) signals. In this paper we propose two software framework in order to 

control a 5 degree of freedom robotic and prosthetic hand. Results are presented where an Emotiv 

Cognitive Suite (i.e. the 1
st
 framework) combined with an embedded software system (i.e. an open source 

Arduino board) is able to control the hand through character input associated with the taught actions of 

the suite. This system provides evidence of the feasibility of brain signals being a viable approach to 

controlling the chosen prosthetic. Results are then presented in the second framework. This latter one 

allowed for the training and classification of EEG signals for motor imagery tasks. When analysing the 

system, clear visual representations of the performance and accuracy are presented in the results using a 

confusion matrix, accuracy measurement and a feedback bar signifying signal strength. Experiments with 

various acquisition datasets were carried out and with a critical evaluation of the results given. Finally 

depending on the classification of the brain signal a Python script outputs the driving command to the 

Arduino to control the prosthetic. The proposed architecture performs overall good results for the design 

and implementation of economically convenient BCI and prosthesis. 
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1. INTRODUCTION 
 

With the current knowledge of how brain works, researchers are able to develop a wide range of 

applications that can improve life quality to those with muscular or motor-neuron disabilities 

using devices called Brain Computer Interfaces (BCI). BCI is defined as “a communication 

and/or control system that allows real-time interaction between the human brain and external 

devices” (Mak and Wolpaw, 2009).  
 

In relation to history of BCIs, in 1973 Vidal was researching into “direct brain-computer 

communication” (Vidal, 1973) and “Real-time detection of brain events in EEG” (Vidal, 1977). 

Up until the 1990’s research did not progress much at which point there was a breakthrough in 

the research with the pioneering research done by Wolpaw et al. who produced an alternate 

approach to a BCI system using ElectroEncephaloGrams (EEG, Wolpaw et al., 1990). Another 

communication approach by Wolpaw et al. was designed for a system with a cursor on the screen 

which the subject would control with thought (Wolpaw et al., 1991). In 1998 Farwell and 

Donchin designed another approach to use “the P300 component of the event-related brain 

potential (ERP)” (Farwell and Donchin, 1998) in order for individuals with motor related 

disabilities to have a form of communication. This system required the user to concentrate on 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.6, No.1,February 2016 

24 

 

screen filled with letters, each flashing at a different frequency, at which point the computer 

would, depending on the P300 signal received, detect the chosen letter. Levine et al. explored “a 

direct brain interface based on event-relate potential” (Levine et al, 2000) with this research 

presenting a system capable of equal accuracy as the other current communication systems. 
 

Literature in the field has focused on developing a BCI that could assist or repair human cognitive 

functions such as restoring hand grasp (Pfurtscheller et al., 2003) or even augmentations like 

controllable prosthesis which “aim to provide a communication channel equivalent to “typing” on 

a computer” (Sajda et al., 2008). As a result of this the research and development of BCIs are 

largely towards neuro-prosthetics, prosthetics that aim towards the rehabilitation of patients; for 

instance Müller-Putz et al. showed that BCI can be used “for the control of neuro-prosthesis in 

patients with high spinal cord lesions” (Müller-Putz et al., 2005).  
 

Ultimately the purpose of a BCI is to acquire the desired signals or intent of the user however 

these BCIs can be either invasive or non-invasive depending on the requirements of the user. An 

invasive BCI means that the system or device is integrated into the individual: for instance 

electrodes directly into the brain matter or partially integrated into the inner skull. Non-invasive 

can operate outside the individual’s body (Smith and Delargy, 2005). Although this is well 

established field of research the real world applications for a non-invasive approach has focused 

towards the domains of virtual reality (Anatole et al., 2008) and gaming (Nijholt, 2009 and 

Rossini et al., 2009).  
 

The awareness that EEG BCI can improve the daily lives of some - if not all - patients is a 

common idea. Höhne et al. presented “a BCI system designed to establish external control for 

severely motor-impaired patients within a very short time” (Höhne et al., 2014). This study 

included patients of various degrees of disabilities with two being in a locked-in state. This study 

showed how valuable and feasible a BCI system for these types of disabilities are as “within only 

six experimental sessions, three out of four patients were able to gain significant control over the 

BCI” (Höhne et al., 2014) and they further explain that their system could outperform some of the 

best assistive technologies these patients were using. Other researchers, such as Bougrain et al. 

performed studies on “decoding intracranial data recorded in the cortex of a monkey and 

replicates the associated movements on a JACO robotic arm by Kinova” (Bougrain et al., 2012). 

Qin et al. performed “classification of motor imagery for brain-computer interface applications, 

by means of source analysis of scalp-recorded EEGs” (Qin et al., 2004) and achieved a 

classification rate of around 80% from their subjects. Finally, Johnson researches into an “EEG 

based BCI that uses steady-state visual evoked potentials on a healthy individual to 

asynchronously control a 6-degree of freedom robotic arm through custom software in real-time 

with high accuracy (Johnson, [no date]). This study implemented a BCI for healthy human rather 

that for medical related reasons but uses a system that could be slow for a control system of 

external device such as a prosthetics due to the nature of Steady-State Visually Evoked Potentials 

(SSVEP) which requires the user to look at a symbol or an area of a screen that is flashing 

repeatedly causing a specific signal in the brain that will be recognised by the system and perform 

a task. 
 

This work aims to design a working prosthetic hand that uses non-invasive EEG based motor 

imagery and provides the user the ability to control the prosthetic hand using motor imagery 

signals. To do this the acquired EEG signal will be processed and classified to produce the 

highest accuracy possible that will be used as an output for control. The purpose of this work is to 

use a consumer grade headset, namely an Emotiv Headset, to acquire raw EEG signals and 

process this data in order to identify and classify the intent of the user. This intent will then be 

used to control a robotic or prosthetic device. An OpenViBE platform will be used as a 

foundation to develop a customized interface in order to record and process signals, to classify the 

extracted and desired features and turn them into commands, finally providing a feedback system 

for those commands. 
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In order to achieve these targets, the following tasks have been broken down: 
 

� Acquisition and recording of the EEG signals 

� Filtering of EEG signals 

� Training of a classifier 

� Analysis of classification performance and accuracy  

� Performing a real-time scenario with feedback 

� Performing a real-time analysis 

� User intent to control a prosthetic 
 

Paragraph 2 introduces the methodology of the research and the flow of processing the signal in 

order to create the BCI system. Paragraph 3 will present the steps of implementing this project 

with the testing of the prosthetic with serial monitor inputs to Arduino. Paragraph 4 performs an 

evaluation of the results produced during the implementation and, finally, Paragraph 5 provides 

and overall conclusion of the project including the methodology used, the limitations and BCI 

illiteracy of users when using the systems, the robustness and the real world or clinical 

applicability of the created BCI systems finishing with a final conclusion. 
 

2. MATERIALS & METHODS 
 

In this paragraph the hardware and software will be presented and discussed, as well as how they 

have been used; underlying information of how they work will be also shown. The overall system 

shown in Figure 1 is made of a robotic hand, a BCI headset and an OpenViBE Software interface 

combined with an open source embedded platform, namely an Arduino board. 
 

 
 

Figure 1 - Overall Design of Framework 

 

Figure 2 displays the assembled 3D printed prosthetic hand that will be used in this research 

project, as current prosthesis can be very expensive and by 3D printing a much cheaper but still 

functional version allowing for customisable prototypes to a user’s specific design quickly and 
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affordably.  The hand design has been inherited from Thingiverse database (2012): STL files 

have been then imported within an environmental software of HP 3D design and manufactured in 

ABS (Acrylonitrile Butadiene Styrene) materials by means of a HP Designjet 3D printer.  
 

Concerning the BCI, the chosen headset is reported in Figure 3, whereas a brief overview of its 

cognitive software interface is detailed in par. 2.1. Finally, the architecture of the OpenViBE 

medium and of the Arduino interface are shown in par. 2.2 and 2.3, respectively, where the main 

components of the project will be introduced. 
 

 
 

Figure 2 – The 3D Printed 5 d.o.f. Prosthetic Hand (design from Thingiverse database, 2012). 

 

2.1. EEG Headset & Cognitive Suite 
 

The BCI headset is an Emotiv EPOC+ premium, i.e. a commercial scientific contextual EEG 

headset that will be used to record the EEG real-time signals from the human brain while subjects 

performing mental tasks (Figure 3). Compared to other medical grade headsets the number of 

electrodes of this device is limited to 14 ones; however in the commercial market this device is 

reasonably a good compromise between efficiency and economical cost.  

 

The EEG headset is limited to the following 14 electrodes as shown in Figure 4, namely the 

electrodes  AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. Along with this 

device is the Research Edition (Software Development Kit) SDK that will be used by the used 

software to acquire the EEG signal data from the headset. 

 

 
 

Figure 3 – the BCI Emotiv EPOC+ Headset. 
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Figure 4 – The Emotiv EPOC+ Electrodes.  

 

For the 1
st
 proposed cognitive Framework is the Emotiv software Cognitive Suite, which will be 

used to acquire the brain signals, train a the classifier in order to properly cluster the human 

thoughts into the class and finally control the prosthesis accordingly. The Cognitive Suite is 

shown in Figure 5: a Graphical User Interface (GUI) performs a floating cube that can be 

manipulated and manoeuvred into different directions by means of the brain signals. A detailed 

explanation of its implementation is reported in the next par. 3.1.  

 

 
 

Figure 5 – Snapshot of the Emotiv Cognitive Suite (i.e. the 1st framework). 

 

2.2. OpenViBE 
 

The 2nd Framework is developed on OpenViBE software platform (Renard, Y. et al., 2010), due 

to it being an open source, stand-alone software that can be used for quick and robust prototyping 

of BCI systems. Figure 6 shows the designer that will be used to develop scenarios that will 

process, train and classify the EEG signals live from the headset or from previously recorded 

EEG files. Par. 3.1 will cover the implementation in detail. 
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Figure 6 – The OpenViBE main design mask (top panel) and acquisition scenario (bottom panel). 

 

2.3. The Arduino’s interface  
 

In order to control the prosthetic and robotic hand, an inter-medium interface is needed to feed 

the output of the cognitive software (namely the 1st and 2nd frameworks) into the robotic hand. To 

this aim, an open source and low-cost multi-purpose bard has been chosen: the Arduino UNO 

board is shown in Figure 7; this microcontroller will be able to receive inputs from a Serial 

Monitor Window connected to the framework and finally send a driving signal to the set of 

servomotors within the robotic hand in order to perform an action, either open or close a finger or 

the whole hand. Such a device has been chosen due to being open-source and is basically a micro-

computer that can be used in control type projects and is suitable for both frameworks. The 

software for Arduino is completely open-source and is an Integrated Development Environment 

(IDE).  The Arduino IDE can provide an easy way for writing code and prototyping. Depending 

on the adopted framework, different code will be used during implementation. 
 

 
 

Figure 7 - The Arduino UNO Board. 
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3. IMPLEMENTATION 
3.1. 1

st
 Framework 

 

The Cognitive Suit allows the user to perform the training of different brain activity or thoughts, 

each of one can then affect a different output. One peculiar feature of the cognitive suite is that it 

will output the assigned key to whichever window is in focus; for instance in Figure 5 the cube is 

being pushed and therefore an assigned key ‘q’ is being broadcast (see the text which is 

highlighted in red colour within the figure). As a consequence, an Arduino serial monitor can 

easily capture the appropriate string letter and decode the message into a command to the 

prosthetic device performing the finger or hand motion. 

 

A training GUI allowing the user to record the so called ‘neutral status’ (namely a status in which 

the cognitive interface will not pursue any output) simply requires the user to relax. For additional 

action such as push or pull actions, different mental states are requires: for example thinking of 

numerical problems or imagining limb movements will trigger diverse behaviours and actions 

accordingly. Due to these different mental states, different skilled users may be able to train a 

larger number of actions, giving more flexibility in the Arduino code and therefore the individual 

movements of the robotic fingers.  

 

According to this set-up, an Arduino code was developed which inherits the outcomes of the 1st 

framework cognitive interface by actuating the hand: Figure 8 shows the mapping code used in 

the 1st framework that converts 4 keys, namely the ‘q’, ‘a’, ‘w’ and‘s’ status to a different posture 

of the hand: closed hand configuration, fully open hand configuration, closed thumb and open 

thumb, respectively. The code also allows to obtain a fully open and close configuration of the 

hand through the pressure of two more keys. 

 

 
 

Figure 8 – The movement mapping between the Cognitive Suite output and the postural robotic hand 

configuration. 
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3.2. 2
nd

 Framework 
 
The 2

nd
 cognitive framework is designed by using the OpenViBE Acquisition Sever and the 

Emotiv Research SDK: this latter one acquires the incoming EEG signals and sends them to the 

OpenViBE platform.  

 
The acquisition scenario (Figure 6, bottom panel) displays to the user a GUI that every 4  seconds 

will go through the process of a black background, followed by a green cross to indicate a new 

cue is going to appear and finally the cue in the form of a red arrow that points either left or right 

(Figure 11). When the cue appears the user must imagine movement of that particular direction 

until the next green cross appears. This ensures that there will be enough samples per cue for the 

duration of the acquisition. The more sample the system has for further classification, the better 

the result will be for accuracy. This stage resumes the training for both the BCI and the user. The 

longer this scenario is explored, the better the performance of the user from practice and the 

better the result the BCI will acquire for further processing.  

 

The acquired EEG signals are then used by a further phase in order to train a Common Spatial 

Pattern (CSP) filter, which was firstly used to improve the separation of two types of input 

signals, namely the left and right motor imagery. For this purpose, the CSP filter successfully 

removes the noise and artefacts which are inherently present within these data. The CSP special 

filter algorithm is applies a linear transformation to project the EEG data in a low-dimensional 

spatial space with a projection matrix. The rows of this matrix are the weights for channels and 

this transformation can maximize the variance of two class signal matrices. Let’s assume that cl 

and cr are the pre-processed EEG matrices under the two classes (i.e. the left and right imagery), 

with N⋅S, where N is the number of data channels and S is the number of samples per each 

channel. Therefore the normalized spatial covariance is computed with the equations (1) where cs 

is the transpose of c and trace (E) computes the sum of the diagonal elements of E. It holds: 
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After computing the spatial covariance, the averaged normalized covariance ANCl and  ANCr are 

calculated by averaging all the trials of each group. Now the composite spatial covariance can be 

computed with the equation (2) where m0 is a matrix of eigenvectors and ∑ is the diagonal matrix 

of eigenvalues. 
 

ANC = ANCl + ANCr = m0 ∑ m0
s      (2) 

 

Figure 9 summarize the application of the CSP spatial filter: namely, the filter is offline trained in 

order to remove the higher frequencies that are not informative with frequency response between 

8 and 30 Hz of the motor imagery task. This processing also discriminates the remaining signals 

into the left and right classes and four blocks. Once the processing has completed, a configuration 

file is returned: this set-up can be furtherly used in the next processing scenarios to finally 

perform the taught filtering task.  
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Figure 9 – Signal Filtering within the OpenViBE architecture.  
 

In order to finally classify the signals, Lotte et al. (2007) investigated the classification algorithms 

of BCI systems and discussed how linear classifiers “are probably the most popular algorithms 

for BCI applications”. Therefore a Linear Discriminant Analysis (LDA) is then applied to the 

signals: this latter one will “use hyperplanes to separate the data representing the different 

classes” (Lotte et al., 2007); two different inputs are expected: a negative class and a positive 

class, for instance C(l|r)=-1 and C(l|r)=+1. Figure 10 refers to the implemented set-up in order to 

train the classifier and distinguish between the left and right imagery movements.  

 

 
 

Figure 10 – Signal Classification within the OpenViBE architecture.  
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After the training analysis of the signal processing, the thought classification is performed: at this 

stage the software will present the user with a GUI (Figure 11) that allows for the examining of 

the previous training steps by replaying the acquisition scenario (top panel of Figure 11) with 

added feedback of the user’s thoughts (bottom panel of Figure 12) as well as a confusion matrix 

in order to display the instruction flow and the classification flow. The instruction flow is received 

from the acquired data (i.e. the desired class) whereas the classification flow is the effective 

output of the classifier processor (i.e. the obtained class). An accuracy measure is also calculated 

and displayed, which refers to the real time classifier by comparing the inputs from the result of 

the classifier processor with the targets received from the stimulation filter. 
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Figure 12 – Visualization of the OpenViBE designed GUI for thought training (top panel) and of the 

Direction of the Motor Imagery Strength after the training (bottom panel). 
 

An Arduino code analogous to the one which has been reported in Figure 8 is also implemented 

and used within the framework in order to then activate the robotic hand: finally, when either left 

or right motor imagery is detected, the whole hand will open or close.  
 

4. RESULTS 
 

Results of the 1st framework demonstrated successful control of an external device, namely the 

3D arm and the Arduino UNO, by using the EEG signals. In this it was noticed that when the 

number of actions trained is increased – namely a set of 8 trials -, the accuracy of the system to 

distinguish between them decreased as shown in Table 1. This issue is likely caused by the 

processing techniques in the background and as a result means that training can be hard as 

interference such as facial movements such as but not limited to; blinking, eyebrow movements, 

clenching of the teeth or even swallowing as well as a limit to know how many movements a user 

can make. 
 

Table 1 - Emotiv Cognitive Suite Results (i.e. the 1
st
 framework) 

 

Action Assigned Key Accuracy (%) 

Neutral N/A 100 

Push q 85 

Pull a 80 

 

The lack of control over the processing in the background for instance the choice in EEG method, 

the filtration and the classifier makes this system less desirable regardless of it successful 

functionality. A prosthetic would need to robust and reliably for real world use and a system that 

cannot allow the user to have a consistent control would not be of use.  
 

Therefore the second framework is designed in order to overcome such drawbacks. In this 

framework, depending on the scenario and the motor imagery focus, the accuracy percentages 

could vary. Table 2 shows that on the offline analysis the system could achieve an accuracy of 

79.92%, whereas the accuracy slightly decreases at 74% in the real time conditions. Although this 
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is a suitable high accuracy, further testing and analysis showed that the accuracy of the left motor 

imagery vs. the right one were different: a 100% accuracy could be achieved for the left motor 

imagery, while the right one could only achieve a value of 56.58%. As the system can properly 

perform on the left motor imagery, a better training maybe performed for the right motor imagery 

or this lower performance could be related to the inter subject variability and be improved by 

recruiting more subjects. 

 
Table 2 -  OpenViBE Scenario Results (i.e. the 2

nd
 framework) 

 

Scenario 
Motor 

Imagery 

Number 

of Cues 

Accuracy 

(%) 
Experiment Analysis Scenario 

Performance  
Left & Right 40 79.92 

Real-time Two Overall 

Performance 
Left & Right 40 74 

Real-time Two First Test Left 40 100 

Real-time Two Second Test Right 40 56.58 

 

5. CONCLUSIONS 
 

This work presented the design and implementation of an EEG based BCI using motor imagery: 

two frameworks were presented, which performed a superior version that filter and classify the 

EEG signal before they output a message to Arduino to control the prosthetic. As a result this 

study has successfully achieved all of the aims to create a fully functional system and proven the 

feasibility of the current design systems for highly accurate classification with two robust but 

affordable systems that could be applied patients requiring applications for external control. 

Finally, a BCI system takes the raw EEG signals and processes them into a viable source of 

controlling devices through the OpenViBE platform. In the future, other approached may be 

explored (Secco et al, 2002; Matrone et al, 2009; Secco et al, 2001; Magenes et al, 2008), as well 

as another technical methodology that provides a better transference of classifier labels or a box 

support for serial communication could be implemented rather than using the proposed bridge 

between the different software platforms.  

 

The 3D printed hand design could be improved slightly, so that the Arduino board can be placed 

inside of the arm for portability rather than the current setup with wires to a breadboard and then 

to the Arduino. This change would require moving all of the servos into different positions 

throughout the arm instead of all together and would have to be considered so as to not affect the 

functionality of the arm. At the time of writing this paper a slightly newer version of that 

incorporated the majority of these design changes by creating a larger sized arm than the one used 

in this study can be seen in the new Thingiverse database (2012). 
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