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ABSTRACT
Peripheral physiological signals, as obtained using electro-
dermal activity and facial electromyography over the corruga-
tor supercilii muscle, are explored as indicators of perceived
relevance in information retrieval tasks. An experiment with
40 participants is reported, in which these physiological sig-
nals are recorded while participants perform information re-
trieval tasks. Appropriate feature engineering is defined, and
the feature space is explored. The results indicate that fea-
tures in the window of 4 to 6 seconds after the relevance judg-
ment for electrodermal activity, and from 1 second before to 2
seconds after the relevance judgment for corrugator supercilii
activity, are associated with the users’ perceived relevance of
information items. A classifier verified the predictive power
of the features and showed up to 14% improvement predicting
relevance. Our research can help the design of intelligent user
interfaces for information retrieval that can detect the user’s
perceived relevance from physiological signals and comple-
ment or replace conventional relevance feedback.
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INTRODUCTION
Information retrieval research relies on methods that are able
to distinguish relevant from irrelevant information. These
methods are based on obtaining relevance assessments from
users when they are examining specific information items.
The relevance assessments can then be utilized in feedback
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loops to specify the information need in subsequent itera-
tions [13], direct a search using visual interfaces [24, 29],
or simply gather relevance assessments from users for evalu-
ation purposes.

One way to obtain relevance assessments is implicit feedback
by monitoring the user, that is, gathering user data in an un-
obtrusive way while users are engaged with an information
retrieval system. Implicit monitoring has been found to be
one of the most useful sources for acquiring relevance as-
sessments from the user as it is does not require users to ex-
plicitly provide relevance judgments [18]. Previous research
has found evidence for implicit behavioral measures, such as
dwell-time (the time the user spends to examine an informa-
tion item) and click-through activity, being useful predictors
of perceived relevance [1, 14].

There is rising interest in implicit signals that could provide
information about the user’s perceived relevance without the
requirement to rely on behavioral measures. Physiological
signals that can capture users’ emotions, attention, and focus
could help information retrieval systems determine the rele-
vance of the content for the user without the need to rely on
behavioral measures that are dependent on the user interface
and interaction design.

This paper reports on an experiment with 40 users, in which
the use of two of the most applicable physiological signals,
electrodermal activity (skin conductance) and corrugator su-
percilii activity (brow muscle) were studied as a potential
source of implicit signals associated with perceived rele-
vance. These peripheral physiological signals were chosen
for this study because they are low cost, unobtrusive, and have
been previously associated with psychophysiological func-
tions that could be associated with perceived relevance [23,
30, 31, 33]. The signals were recorded in response to textual
content shown during an information retrieval task, their as-
sociation with perceived relevance was explored, and a clas-
sification experiment was conducted to predict relevance for
unseen users and information items.

We analyzed the raw signals to study whether the physio-
logical signals could be associated with perceived relevance.
Then a set of features was engineered, and a set of important
features was selected by exploratory data analysis. Finally, a
classifier trained with the chosen features verified the power
of the physiological signals for predicting relevance for un-
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seen participants. The main findings of these experiments are
the following:

1. The best-suited time windows for relevance prediction
from electrodermal activity were found to be from 4 sec-
onds to 6 seconds after the relevance judgment.

2. The best-suited time windows for relevance prediction
from corrugator supercilii activity were found to be from
1 second before to 2 seconds after the relevance judgment.

3. A classifier verified the predictive power of the physiolog-
ical signals with an improvement of 14% against a random
baseline.

The rest of the paper is organized as follows. First, we re-
view the background related to relevance feedback and to the
use of peripheral physiology in information retrieval settings.
Then we describe the experimental study, basic signal anal-
ysis, feature engineering, and the results of the exploratory
feature analysis. Then we explain the classification setup
and characterize the power of the signals for relevance pre-
dictions. Finally, we conclude with a discussion and future
work. Figure 1 illustrates the analysis workflow, from the
data collection to the predictive models.

BACKGROUND
Detecting perceived relevance of information presented for
users is a central task of interactive information retrieval sys-
tems [22]. The perceived relevance can then be used to gather
relevance assessments for evaluation purposes [16], direct a
search in an interactive loop with the system [25], disam-
biguate the user’s information need [27], or even to measure
the user’s satisfaction with the information retrieval system
[9]. Relevance detection can be based on either explicit or
implicit signals and is called explicit feedback and implicit
feedback, respectively.

Explicit feedback is a robust method, as it selects relevant and
irrelevant information based on direct user interaction [20].
Unfortunately, explicit feedback is operationalized at the ex-
pense of users’ cognitive resources [16], as the user has to ex-
plicitly give commands for the information retrieval system to
indicate which information is relevant or irrelevant. Explicit
feedback techniques also suffer from a trade-off regarding the
user’s willingness to invest time to examine the returned in-
formation because the relevance feedback can only be tar-
geted to contents that are explicitly judged by users. Eventu-
ally, as the task complexity increases the cognitive resources
required from the users, the process of relevance assessment
may turn into a non-trivial task [20].

Despite its robustness, explicit feedback is therefore often
practically insufficient due to the cognitive burden that it
causes for the user [17]. Implicit relevance feedback has
been proposed to overcome this cognitive burden. The idea
of implicit relevance feedback is that relevance of an informa-
tion item is inferred from interactional data during the user’s
natural interaction with the search user interface [15].

Implicit feedback [18] has been proposed to obtain relevance
assessments by passively observing searchers as they inter-
act with the system. Implicit feedback has been implemented
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Figure 1. Workflow of the analysis. Physiological data of 40 participants
was recorded during the experimental study. Data of four of the partici-
pants were rejected due to misplaced or loose sensors. Then, basic signal
analysis was carried out in order to examine the association between the
physiological signals and the perceived relevance of information items.
Then, a set of 25 features was extracted from each of the signals, and the
participants were split into two groups of the same size. The first group
was used to explore the feature space and generate a feature ranking,
which was used to train three predictive models. The models were then
tested on the group of unseen participants.

either through the use of surrogate measures based on inter-
action with documents (such as reading time, scrolling, or
document retention) or using other interaction data. Implicit
feedback has been shown to have mixed effectiveness because
the measures that are good indicators of user interest are of-
ten affected by several factors, making the inferences drawn
from user interaction not always valid [34].

Affective feedback is a specific type of implicit feedback, and
has recently been under active research with a focus on us-
ing affective signals to detect the relevance of information
[3]. Affective feedback is based on the idea that physiological
signals are often associated with cognitive functions relevant
to perceiving relevance [4]. Recently, preliminary evidence
supporting a combination of basic implicit signals with phys-
iological signals has been reported [21]. One of the main
advantages of using physiological signals as implicit input,
compared with traditional implicit monitoring, is that these
signals can be detected within seconds or even milliseconds
after the information items are shown to the user. Physio-
logical signals have been shown to correlate with attention,
focus, and semantic memory performance [6, 19], becoming
a promising source for acquiring implicit user feedback.

Electrodermal activity (EDA), also known as galvanic skin
response (GSR) or skin conductance response (SCR), among
others, is a physiological signal that measures the changes in

390

IUI 2015 / Affect  / Health March 29-April 1, 2015, Atlanta, GA, USA



the electrical properties of the skin, due to the varying level
of sweat-induced moisture. EDA has commonly been used
to measure the activation of the sympathetic nervous sys-
tem; therefore, it has proved to be a good indicator of the
level of psychological, physiological and emotional arousal
[2]. More recently, the short-term (phasic) EDA response has
proved to be a useful indicator of stimulus novelty, intensity,
emotional content, and significance [23]. Therefore, electro-
dermal activity has potential to be associated with relevance
judgments while it is possible to be captured with very low
cost and nonintrusive setup. For example, EDA sensors can
be mounted in a computer mouse.

Facial Electromyography (fEMG) is the technique of mea-
suring electrical activity associated with contractions of the
facial muscle fibers. One of the muscle groups measured
through facial electromyography is the corrugator supercilii
muscle (brow muscle). The corrugator supercilii activity
(CSA) is a physiological signal particularly promising for de-
termining the relevance of information because it can be used
to index negative valence, or frowning, mental workload, fa-
tigue, and compensatory mental effort [30, 31, 33]. Corru-
gator supercilii activity also increases during tasks requiring
heightened effortful attention [6]. As with EDA, it is possi-
ble to monitor CSA in a very low cost and nonintrusive setup,
as it can be measured even via computer vision.

While some physiological signals have been found to be asso-
ciated with cognitive functions related to perceived relevance,
complete information retrieval systems that make use of phys-
iological computing are still at an early stage. Recent work
has addressed implicit inference of relevance using peripheral
physiology [5], physiological and affective measures [21], or
brain signals [8]. Nevertheless, it is still unclear which sig-
nals are the most useful and how they should be used (e.g.,
what are the best time windows for physiology-based rele-
vance prediction). Our study seeks to address the above-
mentioned issues by focusing on two signals from the pe-
ripheral physiology and exploring their association with per-
ceived relevance. Moreover, we study the predictive power of
these signals for automatically detecting relevance.

EXPERIMENTAL STUDY
The present study was designed to 1) investigate how the per-
ceived relevance of users of an information retrieval system
is associated with peripheral physiology, 2) study whether
perceived relevance can be predicted from features extracted
from physiological signals, and 3) determine at what point
in time the signals are best suited to indicate the perception
of relevance. We recorded electrodermal activity (EDA) and
corrugator supercilii activity (CSA) while participants were
examining information items returned by a real information
retrieval system.

Participants
Forty participants, 34 males and 6 females, participated in the
study. We ensured that participants had previous experience
in browsing scientific databases and that they were not under
psychopharmacological medication. The age of the partici-
pants ranged from 21 years old to 47 years old (Mean = 28.17,

Figure 2. Physiological sensor setup. Sensors were placed in sites over-
lying the left corrugator supercilii muscle (left) and in the medial pha-
langes of the participant’s left ring and little fingers to measure electro-
dermal activity (right).

Median = 26.5). Most of them were post-graduate (37) and
the rest were undergraduate students. Only one of the partic-
ipants reported being a native English speaker, and 17 differ-
ent mother tongues were reported. Nevertheless, the overall
English reading skills were self-reported as advanced. Par-
ticipants reported themselves to be physically and mentally
healthy.

Materials
The setup of the physiological sensors is illustrated in Fig-
ure 2. A QuickAmp (BrainProducts GmbH., Germany) am-
plifier recorded electrodermal activity (EDA) and corrugator
supercilii activity (CSA) at a sample rate of 1000 Hz.

CSA sensors were filled with SYNAPSE conductive elec-
trode cream (Kustomer Kinetics Inc., USA) and placed on
sites overlying the left corrugator supercilii muscle regions
as recommended by Fridlund and Cicoppo [10]. EDA elec-
trodes were filled with TD-246 skin conductance electrode
paste (Med Associates Inc., USA) and attached to the middle
phalanges of the ring and little fingers of each participant’s
left hand after her hands were washed with soap and water
[7].

The stimulus was presented in the Google Chrome browser.
A custom JavaScript code was injected to record the exact
time in milliseconds, in relation to the PC clock, when each
event took place. To ascertain the synchrony between the
browser timestamps and the physiological data, every sec-
ond the experiment PC sent a synchronization pulse through
the parallel port to the QuickAmp amplifier, and each of the
browser events was synchronized to the closest pulse.

Task
The task was designed so that the participants could perform
an actual search on a real topic of their interest, while still
controlling for as many confounding variables as possible,
by presenting only one search result at a time in the middle
of the screen. The participants were presented with a search
box and instructed to perform a query on a topic they were
familiar with. They were furthermore informed that they were
browsing a scientific database and consequently encouraged
to select topics accordingly.

The system presented, in randomized order, six abstract snip-
pets. Of these six snippets, three were always actual search
results (relevant to the participant’s query) and the other
three were randomly generated (irrelevant to the participant’s
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Figure 3. Experimental task and user interface. The participant submits
a query, and the system retrieves six abstract snippets of which three are
relevant and three are irrelevant. These are presented for the partici-
pant one at a time in a randomized order. The participant rates each
result using a 1–10 scale. This is repeated for a total of six queries. The
figure shows one specific query within a session where the participant
searched for “face recognition.” The rating scales show the participant
judgments. The inner colors of the discs show the ground truth of the
abstracts as returned by the search engine (green denotes relevant, red
denotes irrelevant). The outer rings of the discs show the binarized par-
ticipant judgments. For the first five abstracts, the participant rated
according to the ground truth. The last relevant abstract was, according
to the participant’s judgment, irrelevant.

query). Each abstract was shown until the participant re-
sponded by rating the relevance on a scale from 1 to 10, which
took ca. 8 seconds on average. Then, the snippet was replaced
with the next snippet until all 6 were rated and the participant
was asked to perform a search on the next topic. The experi-
ment was completed after the participant rated 36 abstracts (6
topics x 6 abstract snippets).

Search Engine and Content Database
We built a custom search engine and user interface to have
full control of the retrieval process, the presentation of re-
sults, and the content indexed by the retrieval system. We
used a state-of-the-art unigram language modeling approach
with Bayesian Dirichlet smoothing to rank the results [36].

The relevant results were retrieved based on the ranking pro-
vided by the ranking model directly. The irrelevant results
were selected randomly with an additional boolean constraint
to exclude results that contained words from the participant’s
query.

The content items were from a scientific article database con-
sisting of over 50,000,000 articles from the Web of Science
prepared by Thomson Reuters, Inc. and from the Digital Li-
braries of the ACM, the IEEE, and Springer. The first 40
words of the abstracts of the articles were used as result snip-
pets, which we had found in pilot studies to be sufficient for
the participants to decide whether the article is relevant.

Procedure
At the beginning of the session, the participants were briefed
as to the procedure and purpose of the experiment, before
signing informed consent. They were furthermore informed
of their right to withdraw from the experiment at any time
without any negative consequence. No training session was
provided prior to the task, as the interaction with the sys-
tem was particularly intuitive. Participants could first type
a query, such as “face recognition” as shown in Figure 3.
Then, the search engine returned six articles, three relevant
and three irrelevant. The abstract snippets of the article were
then shown for the participant one at the time in a randomized
order. The participants then read the abstract snippet and was
asked to rate the relevance of the article as soon as they made
a decision on the relevance, without the need of reading the
text until the end. After rating, the next article was shown.
The procedure was repeated for a total of six user-selected
topics. After the experiment, the participants were asked to
fill in an online survey regarding their background informa-
tion, and their participation was compensated with two movie
tickets.

Data Cleaning
After visual inspection, data from four out of the 40 partici-
pants had to be rejected due to loosened or misplaced sensors.
The data were binarized to irrelevant and relevant categories
(illustrated in Figure 3 by the clicked radio buttons and col-
ored outer rings of the discs). When the relevance judgment
explicitly acquired from the participant was less than 4, it was
categorized as an irrelevant judgment, and when the relevance
judgment was higher than 7, it was categorized as a relevant
judgment. Other trials were not categorized, as the judgments
were interpreted as ambiguous and the psychophysiological
responses associated to them were likely to be misleading.

The physiological signals were first filtered to reduce noise
and artifacts. For electrodermal activity we used a low-pass
filter with the cut-off at 5 Hz, and for corrugator supercilii ac-
tivity, a high-pass filter with the cut-off at 10 Hz. To normal-
ize the data, the signals for each participant were then divided
by the standard deviation of the signal for that participant.

BASIC SIGNAL ANALYSIS
In order to get an idea on whether there was information about
perceived relevance in the physiological signals, we started
by analyzing the raw signals. We looked at an 8-second win-
dow time-locked to the moment when the participant gave the
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explicit judgment. The window spanned from 2 seconds be-
fore to 6 seconds after the explicit rating. For every second
within this window, we computed the average signal value
(i.e., average downsampling), resulting in eight values for
each trial.

For both EDA and CSA signals, we executed the following
analysis. Within each participant, we aggregated relevant
and irrelevant trials with both the arithmetic mean and the
more robust median. For a basic overview, we then com-
puted the grand average, i.e., the mean or median of the
participant-specific mean or median values for each second of
the time window. For a more in-depth analysis, we computed
repeated-measures analysis of variance (ANOVA) based on
the mean or median values, with two-level factor “relevance”
(relevant vs. irrelevant) and eight-level factor “time” (eight
seconds of the window).

The results of the computed ANOVAs were corrected using
the Greenhouse-Geisser correction on the degrees of freedom,
as Mauchly’s Test indicated that the assumption of sphericity
had been violated.

Results
Figure 4 shows the grand average based on the mean values
with 95% confidence intervals for both signals. In case of
EDA, a difference was visible between relevant and irrelevant
trials around 4 to 6 seconds after the explicit relevance judg-
ment. In the case of CSA, a difference was visible around
1 second after the explicit relevance judgment. The confi-
dence intervals mostly overlap, which is a first indication of
the hardness of this prediction problem. The grand average
based on the median values showed similar structure.

The ANOVA based on the mean EDA values showed a sig-
nificant main effect of time, F (1.46, 51.25) = 20.56, p <

0.0001. The ANOVA based on median EDA values showed
a significant main effect of relevance F (1.00, 35.00) =

6.19, p < 0.02 as well as time F (1.13, 39.40) = 56.44, p <

0.0001. The ANOVA based on the mean CSA values showed
a significant main effect of time F (4.26, 148.99) = 5.97, p <

0.0001. In case of the median-based ANOVA, main effect of
time on CSA activity was found as well, F (3.83, 134.04) =

8.99, p < 0.0001.

For both signals EDA and CSA, main effect of time was
found, which indicates that the physiological signal changes
reliably due to the relevance judgment. However, the di-
rection of the judgment was only significant for electroder-
mal activity, as indicated by the significant main effect of
the relevance. This means that decision-related physiological
changes in corrugator supercilii activity are either not related
to perceived relevance, too weakly related to become visible,
or not stable enough across time as to cause an interactive
effect.

FEATURE ENGINEERING
The results found in the previous section indicate the presence
of information on perceived relevance in the psychophysio-
logical responses. However, in order to capture this informa-
tion, more sophisticated representations of the EDA and CSA
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Figure 4. Grand average with 95% confidence interval within the 8-
second window of the electrodermal activity (EDA, bottom) and corru-
gator supercilii activity (CSA, top) signals averaged over participants
and trials. The vertical gray line at “0” indicates the explicit rating
event. Differences in the signal can be observed around 1 second after
the rating for corrugator supercilii activity and around 4 to 6 seconds
after the rating for electrodermal activity.

signals are needed. The skin conductance response (SCR)
elicited by a stimulus can take 1 to 3 or 4 seconds to manifest.
After that, electrodermal SCR takes one to three seconds to
reach its peak [7]. In contrast to electrodermal activity, elec-
tromyography response is fast, as corrugator supercilii activ-
ity is found to be elicited at most two seconds after processing
a stimulus [35].

Feature window
Though it is very hard to know exactly when the implicit de-
cision happened, there are two constraints that define the de-
cision moment. First, it is clear that a person needs to read at
least a few words to know what the text is about. The reading
time required to assess the relevance of a text in our exper-
iment is highly variable (Mean = 8.3s, SD = 4.5s), which is
a large obstacle for stimulus-locked analyses (i.e. the win-
dow is locked to the moment when the text item appears on
the screen). Second, as we instructed the participants to as-
sess the relevance as soon as they had made any decision on
it, even though relevance-related processing may start earlier,
the final implicit decision on the relevance is expected to oc-
cur only shortly before the explicit rating (solid rectangle in
Figure 5), which is best captured using response-locked anal-
ysis (i.e. the window is locked to the moment when the par-
ticipant rates the information item). We therefore defined a
time window that included a short time before the explicit
decision (2s), which was considered to be sufficient to cover
the 100s of milliseconds elapsed between the implicit deci-
sion and the explicit rating in relation to awareness, prepara-
tion of response and response execution (Sternberg stimulus-
response model [28]); and a relatively long time following it
(6s), as especially EDA changes very slowly (SCR can take
up to 6 or 7 seconds to reach its peak [7]).
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Figure 5. Feature window. The participant first submits the query; then a sequence of abstract snippets is presented, one snippet at a time. For each
of those, the participant reads the text for an unfixed amount of time (M = 8.3, SD = 4.5, in seconds) and, after making a decision regarding its
relevance to the query, rates accordingly. The time window selected to generate the features is outlined in the figure; it goes from 2 seconds before
to 6 seconds after the rating. The decision on the relevance was assumed to happen at most 2 seconds before the rating, and the feature window was
selected to capture the psychophysiological responses associated with it, which for corrugator supercilii activity takes around one to two seconds and
in the case of electrodermal activity can take up to 6 or 7 seconds. Features were generated from eight 1-second (high-resolution) and four 2-second
(low-resolution) time slices of the feature window.

Even though the selected time window overlaps with the next
item presentation, the randomization of the presentation order
of relevant and irrelevant text items together with the large
number of participants should redress confounding noise and
artifacts introduced by the next presented information item.

Feature generation
We generated features within this 8-second time window
(dashed rectangle in Figure 5), time-locked to the moment
when the participant gave the explicit rating (“0s” in Fig-
ure 5). Given the psychophysiolgical literature and the exper-
imental procedure, it is now likely that this window contains
the psychophysiological response associated with the point
in time when the participant processed the stimuli and made a
decision whether the information is relevant or irrelevant (i.e.,
implicit decision, black dot in Figure 5). Within the window,
we generated high-resolution and low-resolution features; the
first ones were based on nonoverlapping 1-second slices, the
latter based on nonoverlapping 2-second slices.

Using this basic structure, we generated features describ-
ing four different characterizations of the signals within the
time window of a trial. Let h indicate high-resolution fea-
tures and l indicate low-resolution features. The set Ih =

{�2,�1, 0, 1, 2, 3, 4, 5} describes the start seconds of the
1-second slices, the set Il = {�2, 0, 2, 4} describes the
start seconds of the 2-second slices, and the set Id =

{�1, 0, 1, 2, 3, 4, 5} describes the middle second of adjacent
1-second slices. Furthermore, si,j describes the values of the
physiological signal s 2 {EDA,CSA} from i seconds to j

seconds.

The average signal features quantify the mean signal per time
slice. They are defined as follows:

h

i
= mean(si,i+1

)� blh, i 2 Ih

l

j
= mean(sj,j+1

)� bll, j 2 Il

These features are baseline-corrected, that is, centered by
subtracting a trial-based baseline blh and bll.

The difference features quantify the amount of change of the
signals between adjacent time slices. They are defined as fol-
lowed:

d

k
= (mean(sk,k+1

)� mean(sk�1,k
))� bld, k 2 Id

These are baseline-corrected, as they are centered by a trial-
specific baseline bld describing the mean differences.

The maximum signal features quantify the maximum signal
per window. They are defined as follows:

maxh = max(h

i
, i 2 Ih)

maxl = max(l

j
, j 2 Il)

maxd = max(d

k
, k 2 Id)

The latency features quantify the latency to the maximum
value. They are defined as follows:

lath = argmaxi(h
i
, i 2 Ih)

latl = argmaxj(l
j
, j 2 Il)

latd = argmaxk(d
k
, k 2 Id)

The defined characterizations describe a general feature en-
gineering framework for physiological signals, where each
signal is described by 25 features. Table 1 shows the final set
of features generated for EDA and CSA using this procedure.

EXPLORATORY FEATURE ANALYSIS
In order to analyze the quality and importance of the indi-
vidual features, we conducted an exploratory feature analy-
sis. We wanted to identify specific features that are associ-
ated with perceived relevance using data of half of the valid
participants (N = 18). We ranked the features according
to their generalizability across participants utilizing a widely
used feature-selection technique based on the filter principle
[26]. Electrodermal activity and corrugator supercilii activity
features were ranked separately using identical procedures.
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Electrodermal activity (EDA) Corrugator supercilii activity (CSA)
Features #Part. W̄ SD(W ) Rank Features #Part. W̄ SD(W ) Rank

M
od

el
M

3
8
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

M
od
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M

2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

M
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M

1

8
>>>>>>><

>>>>>>>:

latd 9 158 38 1 d

0 7 163 42 1
9
>>>>>=

>>>>>;
M

odel
M

1

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

M
odel

M

2

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

M
odel

M

3

d

5 7 170 50 2 h

0 7 159 57
d

3 7 151 38 maxh 7 141 36
d

2 7 149 33 l

0 6 156 43 2
h

5 7 146 36 h

-2 5 153 29 3
l

4 7 146 24 maxd 5 137 48
d

4 7 140 47 d

2 4 153 23 4
h

4 6 146 25 3 h

-1 4 136 16
l

2 4 133 44 4 h

4 4 130 39
maxd 4 122 29 d

-1 4 130 40
h

3 3 156 2 5 latd 4 123 21
h

-2 3 148 39 h

3 4 117 43
maxl 3 140 33 l

-2 3 160 41 5
h

2 3 125 49 d

5 3 153 14
l

-2 2 168 36 6 latl 3 150 20
maxh 2 144 36 d

4 3 140 6
d

1 2 123 44 l

2 3 133 38
d

-1 2 110 23 maxl 3 123 53
l

0 2 81 4 l

4 2 145 21 6
h

0 2 75 11 d

1 2 135 25
latl 1 156 – 7 h

1 2 130 34
lath 1 119 – lath 2 126 30
h

-1 1 111 – h

2 2 122 52
h

1 1 78 – d

3 1 136 – 7
d

0 1 77 – h

5 0 – – 8
Table 1. The features were named as follows: hi are the features generated in the high-resolution time window, from second i to second i + 1, relative
to the moment the participant gives explicit feedback. The l

i are the features generated in the low-resolution time window from second i to second
i + 2, relative to the moment the participant gives explicit feedback. The d

i are the features generated from the difference between i to i + 1 and
i � 1 to i seconds relative to the moment the participant gives explicit feedback. maxh,l,d and lath,l,d are generated from the maximum value and
latency to the maximum value in the high-resolution (h), low-resolution (l), and difference (d) features. Electrodermal activity-derived features are
shown in the left part of the table and corrugator supercilii activity-derived features in the right. #Part. indicates the number of participants for whom
the feature appears in the top features. The mean of the W statistic and the standard deviation for these participants are indicated in columns W̄ and
SD respectively. The features are ranked according to the number of times they are included in a participant’s top features, which is indicated by Rank.
Additionally, the set of features used for each of the three predictive models M1, M2, and M3 is indicated as well.

For each participant, the Wilcoxon rank-sum statistic (W )
was computed for every feature between relevant and irrele-
vant trials. The five features with highest W including draws
were then selected for each participant (i.e., top features).
Following, in order to analyze the features over participants,
we ranked the features according to the number of times the
features were included in a participant’s top features.

Results
Table 1 contains the ranked features for electrodermal activity
and corrugator supercilii activity, according to the number of
participants’ top features each feature belongs to. The mean
W and standard deviation for these participants are included
as well in the table.

Electrodermal activity was found to have the highest associ-
ation with relevance via the latd feature, as half of the par-
ticipants had this feature in their top features. This feature
represents the latency to the maximal difference between two
adjacent slices. Therefore, the point in time in which the max-
imum increase of EDA occurs appears to be a good indicator
of the content of the relevance judgments. Interestingly, h5,
l

4, d5, and d

4 are some of the top-ranked features and are all
generated from the time window from 4 to 6 seconds after
the relevance judgment. The h

5 and l

4 features refer to the
amount of electrodermal activity between 5 to 6, and 4 to 6
seconds after the relevance judgment is made, respectively.
The d

5 feature is a measure of how much the electrodermal

activity changes five seconds after the relevance judgment,
and d

4 measures the change of EDA around 4 seconds after
the explicit judgment. As previously pointed out, the skin
conductance response (SCR) elicited by a stimulus can take
up to 6 or 7 seconds to reach its peak [7]. Thus, considering
the implicit decision moment as the trigger for SCR, these
features could well be related to the SCR peak, which in turn
would be associated with relevance judgments. Moreover,
the mean W for d5 is very high compared with the other fea-
tures. This is an indicator that for the participants for whom
this feature is in the top features, there is a strong association
between the increase of EDA around 5 seconds after the judg-
ment, and the content of the judgment. Finally, it is worthy to
recall the fact that many difference features appear in the top
of the table for electrodermal activity, as five out of the seven
first- and second-ranked features are difference features. This
fact points in the direction that the association of EDA sig-
nal with perceived relevance relies on how the signal changes
across time, more than in absolute values.

Corrugator supercilii activity was associated with relevance
via the features generated from the signal around the moment
when the participant made explicit the relevance judgment.
The d

0 feature refers to the change in CSA between the slice
before and the slice after the explicit relevance judgment is
made. The h0 and l

0 features refer to the first 1-second and 2-
second slice after the relevance judgment, respectively. Based
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on the results of the ranking, it is likely that at least these three
features, and therefore the time window from 1 second before
to 2 seconds after the relevance judgment, are associated with
users’ perception of relevance of information items. As previ-
ously pointed out, corrugator supercilii activity is found to be
elicited at most 2 seconds after processing a stimulus. There-
fore, the finding that the highest ranked features are in this
time window is coherent with the psychophysiological liter-
ature. Hence we can deduce that in the instants immediately
before and after the relevance judgment is made, corrugator
supercilii activity is potentially associated with perceived rel-
evance. It is also interesting to point out that the maximum
1-second slice in the signal (i.e., maxh) belongs to the group
of first-ranked features. Therefore, it appears that, contrarily
to electrodermal activity where the association with perceived
relevance seems to come from the changes in the signal (dif-
ference features), for corrugator supercilii activity, the peak
value in the signal seems to be one of the properties more
strongly associated with perceived relevance, together with
the signal values around the moment of the explicit rating.

PREDICTIVE POWER
In order to verify that our generated features have predictive
power, we built classifiers that predict relevance judgments
for the 18 participants of our study not used in the exploratory
feature analysis. This allowed us to test the generalizability of
the features. We used a multiview learning method, a leave-
one-participant-out strategy, and assumed the relevance judg-
ments to be balanced [8, used the same scheme]. The latter
assumption reassembles our original experimental design and
allowed us to focus on the predictive power of the features
rather then the problem of potentially imbalanced relevance
judgments.

Prediction model
In detail, we used a multiple kernel learning (MKL) method
to learn classification models of the following form:

y = f(v1, . . . ,vK) =

KX

k=1

�khwk,�k(vk)i+ b.

Here, y denotes the binary relevance judgment, and vk are the
features generated from the different signals (called a view)
that is, v1 is the view with the features for EDA and v2 is
the view with the features for CSA. h·, ·i denotes the scalar
product, wk the weight vector of the observations, �k(vk)

the feature map of the view vk, �k the kernel weights, and
b the bias. Given the selected features for each view vk, we
normalized the data and computed a Gaussian kernel with the
kernel width defined as the median distance between the ob-
servations [12]. For the concrete estimation of the classifi-
cation models, we use a Bayesian MKL algorithm with an
efficient inference based on variational approximation [11].

Prediction setup
We applied a leave-one-participant-out learning strategy as
follows. For each participant we learned a classification
model using the other participants’ data (i.e., the remaining
seventeen participants). The prediction accuracy was then

Mean SD Mean
Model accuracy accuracy p-value improvement
M3 0.5359 0.0814 0.0783 7.19%

M1 0.5376 0.0787 0.0587 7.51%

M2 0.5711 0.0997 0.0076 14.22%

Table 2. Classification results based on the unseen 18 participants for
models based on different feature sets. The table lists the mean clas-
sification accuracy, the p-value indicating a significant different mean
classification accuracy compared to the random baseline, and the corre-
sponding mean improvement. Because of our experimental design, the
random baseline prediction of whether an abstract is relevant or irrele-
vant is 0.5. Bold entries denote that improvements are statistically sig-
nificant at a level of ↵ = 0.05, p-value < ↵ with correction for multiple
testing.

computed on the participant’s relevance observations. The
number of relevance observations varies slightly for each par-
ticipant because of the binarization. We established balanced
data by randomly drawing the learning set and the test set
from the set of relevant and the set of irrelevant observa-
tions, each with the number of observations defined by the
smaller set. This reassembles our original experimental de-
sign and is a simple but well-established strategy to exclude
possible problems of the classification method with imbal-
anced classes. To eliminate a possible observation sampling
bias we repeated this procedure five times.

Model definition and feature sets
Based on the exploratory feature analysis, we defined three
basic models, M1, M2, and M3 with increasing sizes of fea-
ture sets, and computed classification models based on these
feature sets. Model M1 contained the top five features includ-
ing draws, model M2 the top ten features including draws,
and model M3 all features from both signals (see Table 1,
column #Part.).

Results
Table 2 summarizes the classification accuracies for the mod-
els M1, M2, and M3 based on the different feature sets. We
report the mean classification accuracy, improvement over the
random baseline, and the p-value of a t-test for significance
corrected for multiple testing using the Bonferroni correction.
The t-test was applicable because the Shapiro-Wilk test did
not reject the null hypothesis that the samples come from a
normal distribution.

The results verified that there is predictive power in the set
of features generated for EDA and CSA and that the features
generalize to new users. The M2 (medium feature set) clas-
sification models predicted relevant and irrelevant abstracts
for an unseen participant significantly better than the random
baseline and achieved a mean improvement of 14%. In the
cases of M1 (smallest feature set) and M3 (all features) clas-
sification models, no significant improvement could be found.
Therefore, the M1 feature set contained insufficient informa-
tion to discriminate the relevant and irrelevant items. On the
other hand, the M3 feature set contained all possible informa-
tion, but also introduced a significant amount of noise.

Figure 6 shows the individual classification performances us-
ing model M2 for each of the 18 participants. Points indi-
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Figure 6. Individual classification accuracy using model M2 for each of
the 18 participants based on training on data of the remaining partici-
pants and ordered according to the accuracy. Points indicate the mean
accuracy, the error bars show the bootstrap confidence intervals.

cate the mean predicting accuracy, and error bars show boot-
strap confidence intervals. The horizontal line at 0.5 marks
the random baseline. Fifteen participants are above, and 3
participants are below the random baseline. We also can ob-
serve that for some participants, the variation is very small
(e.g., participants s34, s29, and s23), whereas for others it
is substantial (e.g., participants s15 and s38).

As a final observation, we want to point out participant s34,
for whom the prediction worked well and with low variation.
The exemplary “face recognition” search session in Figure 3
was part of his experiment. The classifier predicted the first
five articles according to the participant’s explicit ratings. The
last article was predicted to be relevant, contrary to the partic-
ipant’s rating. However, the abstract can be seen as relevant.
The participant perhaps made a mistake, and we could de-
tect it using physiolgical signals. Even though this is only
one specific case, it nicely illustrates the potential of this ap-
proach.

DISCUSSION

The results indicate that the EDA and CSA are associated
with perceived relevance and the features extracted from the
signals transfer to improved accuracy in a classification setup.
However, our experimental setup leaves room for further re-
search in three respects.

First, our models in general significantly outperform the ran-
dom baseline, which indicates that psychophysiology alone
can help predict relevance. However, the classification accu-
racy achieved using only the physiological signals hints that
these signals alone are unlikely to serve as relevance predic-
tors. Therefore, psychophysiology is envisioned to be used
in combination with other implicit relevance feedback tech-
niques, such as brain signals [8] or facial expressions [5], to
strengthen current information retrieval systems.

Second, our experimental design is balanced between rele-
vant and irrelevant abstracts in order to ensure that we mea-
sure signals and effects related to relevance judgments. In a
real information retrieval setting, however, it is likely that the
two classes are imbalanced with the majority of the informa-
tion items being irrelevant. Experiments with more realistic

data and larger amount of observations are needed to show
how our results generalize to such scenarios.

Third, the prediction accuracy varies substantially across and
within participants. As can be glanced from the left side
of Figure 6, our approach achieves good accuracy for about
10 out of 18 unseen participants. Along with the specific
observation regarding participant s34, this underlines the
possibility that there may be substantial differences between
users’ physiological signals associated with perceived rele-
vance. Other factors need to be taken into account as, for in-
stance, it has been shown that there is a portion of users that
are “EDA non-responders” [32]. Consequently, personalized
models that are built for each user separately could further
improve and stabilize the prediction accuracy.

CONCLUSIONS
Physiological sensors are becoming more ubiquitous and
available for every day use. This has raised an interest in
study of their usefulness for a wide spectrum of computing
applications. We studied peripheral physiological signals for
predicting users’ perceived relevance when they are engaged
in an information retrieval task. In the present work, we con-
centrated on two of the most promising physiological signals:
electrodermal activity (EDA) and corrugator supercilii activ-
ity (CSA). Our results suggest that peripheral physiology can
be used to predict relevance of information for a user when
engaged in an information retrieval task, but that the predic-
tion is sensitive to selecting correct features and time win-
dows. Features in the window of 4 to 6 seconds after the rel-
evance judgment for electrodermal activity (EDA) and from
1 second before to 2 seconds after the relevance judgment for
corrugator supercilii activity (CSA) were found to be asso-
ciated with the perceived relevance. Our findings can help
to build systems that can detect relevance from physiology
and open a horizon for adaptive intelligent systems that can
proactively, with minimum user intervention, react to a user’s
information needs.
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